Do you want to publish a course? Click here

Bounding quantum-classical separations for classes of nonlocal games

64   0   0.0 ( 0 )
 Added by Tom Bannink
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We bound separations between the entangled and classical values for several classes of nonlocal $t$-player games. Our motivating question is whether there is a family of $t$-player XOR games for which the entangled bias is $1$ but for which the classical bias goes down to $0$, for fixed $t$. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-$m$ games and show that their classical value is always at least $frac{1}{m} + frac{m-1}{m} t^{1-t}$. Secondly, for free XOR games, in which the input distribution is of product form, we show $beta(G) geq beta^*(G)^{2^t}$ where $beta(G)$ and $beta^*(G)$ are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is $1-epsilon$ then the classical value is at least $1-mathcal{O}(sqrt{epsilon log k})$ where $k$ is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms.



rate research

Read More

114 - S.J. van Enk , R. Pike 2002
We consider two aspects of quantum game theory: the extent to which the quantum solution solves the original classical game, and to what extent the new solution can be obtained in a classical model.
We introduce various measures of forward classical communication for bipartite quantum channels. Since a point-to-point channel is a special case of a bipartite channel, the measures reduce to measures of classical communication for point-to-point channels. As it turns out, these reduced measures have been reported in prior work of Wang et al. on bounding the classical capacity of a quantum channel. As applications, we show that the measures are upper bounds on the forward classical capacity of a bipartite channel. The reduced measures are upper bounds on the classical capacity of a point-to-point quantum channel assisted by a classical feedback channel. Some of the various measures can be computed by semi-definite programming.
We introduce a simple transformation on two-player nonlocal games, called anchoring, and prove an exponential-decay parallel repetition theorem for all anchored games in the setting of quantum entangled players. This transformation is inspired in part by the Feige-Kilian transformation (SICOMP 2000), and has the property that if the quantum value of the original game $G$ is $v$ then the quantum value of the anchored game $G_bot$ is $1 - (1 - alpha)^2 cdot (1 - v)$ where $alpha$ is a parameter of the transformation. In particular the anchored game has quantum value $1$ if and only if the original game $G$ has quantum value $1$. This provides the first gap amplification technique for general two-player nonlocal games that achieves exponential decay of the quantum value.
We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix $Ainmathbb{R}^{ntimes d}$, sublinear algorithms for the matrix game $min_{xinmathcal{X}}max_{yinmathcal{Y}} y^{top} Ax$ were previously known only for two special cases: (1) $mathcal{Y}$ being the $ell_{1}$-norm unit ball, and (2) $mathcal{X}$ being either the $ell_{1}$- or the $ell_{2}$-norm unit ball. We give a sublinear classical algorithm that can interpolate smoothly between these two cases: for any fixed $qin (1,2]$, we solve the matrix game where $mathcal{X}$ is a $ell_{q}$-norm unit ball within additive error $epsilon$ in time $tilde{O}((n+d)/{epsilon^{2}})$. We also provide a corresponding sublinear quantum algorithm that solves the same task in time $tilde{O}((sqrt{n}+sqrt{d})textrm{poly}(1/epsilon))$ with a quadratic improvement in both $n$ and $d$. Both our classical and quantum algorithms are optimal in the dimension parameters $n$ and $d$ up to poly-logarithmic factors. Finally, we propose sublinear classical and quantum algorithms for the approximate Caratheodory problem and the $ell_{q}$-margin support vector machines as applications.
107 - N. Aharon , S. Machnes , B. Reznik 2013
We present a family of nonlocal games in which the inputs the players receive are continuous. We study three representative members of the family. For the first two a team sharing quantum correlations (entanglement) has an advantage over any team restricted to classical correlations. We conjecture that this is true for the third member of the family as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا