Do you want to publish a course? Click here

Reconciling $B$-meson Anomalies, Neutrino Masses and Dark Matter

267   0   0.0 ( 0 )
 Added by Girish Kumar
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We explore the connection of the leptoquark solution to the recently reported $B$-meson anomalies with a mechanism of neutrino mass generation and a viable dark matter candidate. We consider a model consisting of two scalar leptoquarks and three generations of triplet fermions: neutrino masses are radiatively generated at the 3-loop level and, by imposing a discrete $Z_2$ symmetry, one can obtain a viable dark matter candidate. We discuss the constraints on the flavour structure of this model arising from numerous flavour observables. The rare decay $Kto pi^+ ubar u$ and charged lepton flavour violating $mu-e$ conversion in nuclei are found to provide the most stringent constraint on this class of models.



rate research

Read More

Motivated by an explanation of the $R_{K^{(*)}}$ anomalies, we propose a Standard Model extension via two scalar SU(2)$_L$ triplet leptoquarks and three generations of triplet Majorana fermions. The gauge group is reinforced by a $Z_2$ symmetry, ensuring the stability of the lightest $Z_2$-odd particle, which is a potentially viable dark matter candidate. Neutrino mass generation occurs radiatively (at the three-loop level), and leads to important constraints on the leptoquark couplings to leptons. We consider very generic textures for the flavour structure of the $h_1$ leptoquark Yukawa couplings, identifying classes of textures which succeed in saturating the $R_{K^{(*)}}$ anomalies. We subsequently carry a comprehensive analysis of the models contributions to numerous high-intensity observables such as meson oscillations and decays, as well as charged lepton flavour violating processes, which put severe constraints on the flavour structure of these leptoquark extensions. Our findings suggest that the most constraining observables are $K^+ to pi^+ u bar u$ decays, and charged lepton flavour violating $mu -e$ conversion in nuclei (among others). Nevertheless, for several classes of flavour textures and for wide mass regimes of the new mediators (within collider reach), this Standard Model extension successfully addresses neutrino mass generation, explains the current $R_{K^{(*)}}$ tensions, and offers a viable dark matter candidate.
We introduce two scalar leptoquarks, the SU$(2)_L$ isosinglet denoted $phisim(mathbf{3}, mathbf{1}, -1/3)$ and the isotriplet $varphisim(mathbf{3}, mathbf{3}, -1/3)$, to explain observed deviations from the standard model in semi-leptonic $B$-meson decays. We explore the regions of parameter space in which this model accommodates the persistent tensions in the decay observables $R_{D^{(*)}}$, $R_{K^{(*)}}$, and angular observables in $bto s mumu$ transitions. Additionally, we exploit the role of these exotics in existing models for one-loop neutrino mass generation derived from $Delta L=2$ effective operators. Introducing the vector-like quark $chi sim (mathbf{3}, mathbf{2}, -5/6)$ necessary for lepton-number violation, we consider the contribution of both leptoquarks to the generation of radiative neutrino mass. We find that constraints permit simultaneously accommodating the flavour anomalies while also explaining the relative smallness of neutrino mass without the need for cancellation between leptoquark contributions. A characteristic prediction of our model is a rate of muon--electron conversion in nuclei fixed by the anomalies in $b to s mu mu$ and neutrino mass; the COMET experiment will thus test and potentially falsify our scenario. The model also predicts signatures that will be tested at the LHC and Belle II.
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop diagrams involving TeV-scale leptoquark (LQ) scalars $R_2$ and $S_3$. Fits to neutrino oscillation parameters are obtained satisfying all flavor constraints which also explain the anomalies in $R_{D^{(star)}}$, $R_{K^{(star)}}$ and $Delta a_mu$ within $1, sigma$. An isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point out that the doubly-charged scalar contained therein can be produced in the decays of the $S_3$ LQ, which enhances its reach to 1.1 (6.2) TeV at $sqrt s=14$ TeV high-luminosity LHC ($sqrt s=100$ TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa couplings of the LQs to the first two family fermions, arising from non-resonant dilepton ($pp rightarrow ell^+ ell^-$) processes mediated by $t$-channel LQ exchange, which for 1 TeV LQ mass, are found to be in the range $(0.15 - 0.36)$. These limits preclude any explanation of $R_{D^{(star)}}$ through LQ-mediated $B$-meson decays involving $ u_e$ or $ u_mu$ in the final state. We also find that the same Yukawa couplings responsible for the chirally-enhanced contribution to $Delta a_mu$ give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding branching ratios being at (2-6)% level, which could be tested at future hadron colliders, such as HL-LHC and FCC-hh.
We propose a simple scenario that directly connects the dark matter (DM) and neutrino mass scales. Based on an interaction between the DM particle $chi$ and the neutrino $ u$ of the form $chichi u u/Lambda^2$, the DM annihilation cross section into the neutrino is determined and a neutrino mass is radiatively induced. Using the observed neutrino mass scale and the DM relic density, the DM mass and the effective scale $Lambda$ are found to be of the order MeV and GeV, respectively. We construct an ultraviolet-complete toy model based on the inverse seesaw mechanism which realizes this potential connection between DM and neutrino physics.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا