Do you want to publish a course? Click here

Cloud based Real-Time and Low Latency Scientific Event Analysis

260   0   0.0 ( 0 )
 Added by Chen Yang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Astronomy is well recognized as big data driven science. As the novel observation infrastructures are developed, the sky survey cycles have been shortened from a few days to a few seconds, causing data processing pressure to shift from offline to online. However, existing scientific databases focus on offline analysis of long-term historical data, not real-time and low latency analysis of large-scale newly arriving data. In this paper, a cloud based method is proposed to efficiently analyze scientific events on large-scale newly arriving data. The solution is implemented as a highly efficient system, namely Aserv. A set of compact data store and index structures are proposed to describe the proposed scientific events and a typical analysis pattern is formulized as a set of query operations. Domain aware filter, accuracy aware data partition, highly efficient index and frequently used statistical data designs are four key methods to optimize the performance of Aserv. Experimental results under the typical cloud environment show that the presented optimization mechanism can meet the low latency demand for both large data insertion and scientific event analysis. Aserv can insert 3.5 million rows of data within 3 seconds and perform the heaviest query on 6.7 billion rows of data also within 3 seconds. Furthermore, a performance model is given to help Aserv choose the right cloud resource setup to meet the guaranteed real-time performance requirement.



rate research

Read More

We implemented the NaNet FPGA-based PCI2 Gen2 GbE/APElink NIC, featuring GPUDirect RDMA capabilities and UDP protocol management offloading. NaNet is able to receive a UDP input data stream from its GbE interface and redirect it, without any intermediate buffering or CPU intervention, to the memory of a Fermi/Kepler GPU hosted on the same PCIe bus, provided that the two devices share the same upstream root complex. Synthetic benchmarks for latency and bandwidth are presented. We describe how NaNet can be employed in the prototype of the GPU-based RICH low-level trigger processor of the NA62 CERN experiment, to implement the data link between the TEL62 readout boards and the low level trigger processor. Results for the throughput and latency of the integrated system are presented and discussed.
Large volumes of videos are continuously recorded from cameras deployed for traffic control and surveillance with the goal of answering after the fact queries: identify video frames with objects of certain classes (cars, bags) from many days of recorded video. While advancements in convolutional neural networks (CNNs) have enabled answering such queries with high accuracy, they are too expensive and slow. We build Focus, a system for low-latency and low-cost querying on large video datasets. Focus uses cheap ingestion techniques to index the videos by the objects occurring in them. At ingest-time, it uses compression and video-specific specialization of CNNs. Focus handles the lower accuracy of the cheap CNNs by judiciously leveraging expensive CNNs at query-time. To reduce query time latency, we cluster similar objects and hence avoid redundant processing. Using experiments on video streams from traffic, surveillance and news channels, we see that Focus uses 58X fewer GPU cycles than running expensive ingest processors and is 37X faster than processing all the video at query time.
NaNet is an FPGA-based PCIe X8 Gen2 NIC supporting 1/10 GbE links and the custom 34 Gbps APElink channel. The design has GPUDirect RDMA capabilities and features a network stack protocol offloading module, making it suitable for building low-latency, real-time GPU-based computing systems. We provide a detailed description of the NaNet hardware modular architecture. Benchmarks for latency and bandwidth for GbE and APElink channels are presented, followed by a performance analysis on the case study of the GPU-based low level trigger for the RICH detector in the NA62 CERN experiment, using either the NaNet GbE and APElink channels. Finally, we give an outline of project future activities.
Data labeling is a necessary but often slow process that impedes the development of interactive systems for modern data analysis. Despite rising demand for manual data labeling, there is a surprising lack of work addressing its high and unpredictable latency. In this paper, we introduce CLAMShell, a system that speeds up crowds in order to achieve consistently low-latency data labeling. We offer a taxonomy of the sources of labeling latency and study several large crowd-sourced labeling deployments to understand their empirical latency profiles. Driven by these insights, we comprehensively tackle each source of latency, both by developing novel techniques such as straggler mitigation and pool maintenance and by optimizing existing methods such as crowd retainer pools and active learning. We evaluate CLAMShell in simulation and on live workers on Amazons Mechanical Turk, demonstrating that our techniques can provide an order of magnitude speedup and variance reduction over existing crowdsourced labeling strategies.
Arguably data is the new natural resource in the enterprise world with an unprecedented degree of proliferation. But to derive real-time actionable insights from the data, it is important to bridge the gap between managing the data that is being updated at a high velocity (i.e., OLTP) and analyzing a large volume of data (i.e., OLAP). However, there has been a divide where specialized solutions were often deployed to support either OLTP or OLAP workloads but not both; thus, limiting the analysis to stale and possibly irrelevant data. In this paper, we present Lineage-based Data Store (L-Store) that combines the real-time processing of transactional and analytical workloads within a single unified engine by introducing a novel lineage-based storage architecture. By exploiting the lineage, we develop a contention-free and lazy staging of columnar data from a write-optimized form (suitable for OLTP) into a read-optimized form (suitable for OLAP) in a transactionally consistent approach that also supports querying and retaining the current and historic data. Our working prototype of L-Store demonstrates its superiority compared to state-of-the-art approaches under a comprehensive experimental evaluation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا