Do you want to publish a course? Click here

Understanding Image Quality and Trust in Peer-to-Peer Marketplaces

156   0   0.0 ( 0 )
 Added by Xiao Ma
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

As any savvy online shopper knows, second-hand peer-to-peer marketplaces are filled with images of mixed quality. How does image quality impact marketplace outcomes, and can quality be automatically predicted? In this work, we conducted a large-scale study on the quality of user-generated images in peer-to-peer marketplaces. By gathering a dataset of common second-hand products (~75,000 images) and annotating a subset with human-labeled quality judgments, we were able to model and predict image quality with decent accuracy (~87%). We then conducted two studies focused on understanding the relationship between these image quality scores and two marketplace outcomes: sales and perceived trustworthiness. We show that image quality is associated with higher likelihood that an item will be sold, though other factors such as view count were better predictors of sales. Nonetheless, we show that high quality user-generated images selected by our models outperform stock imagery in eliciting perceptions of trust from users. Our findings can inform the design of future marketplaces and guide potential sellers to take better product images.



rate research

Read More

To mitigate the attacks by malicious peers and to motivate the peers to share the resources in peer-to-peer networks, several reputation systems have been proposed in the past. In most of them, the peers evaluate other peers based on their past interactions and then aggregate this information in the whole network. However such an aggregation process requires approximations in order to converge at some global consensus. It may not be the true reflection of past behavior of the peers. Moreover such type of aggregation gives only the relative ranking of peers without any absolute evaluation of their past. This is more significant when all the peers responding to a query, are malicious. In such a situation, we can only know that who is better among them without knowing their rank in the whole network. In this paper, we are proposing a new algorithm which accounts for the past behavior of the peers and will estimate the absolute value of the trust of peers. Consequently, we can suitably identify them as a good peers or malicious peers. Our algorithm converges at some global consensus much faster by choosing suitable parameters. Because of its absolute nature it will equally load all the peers in network. It will also reduce the inauthentic download in the network which was not possible in existing algorithms.
Peer to peer marketplaces such as AirBnB enable transactional exchange of services directly between people. In such platforms, those providing a service (hosts in AirBnB) are faced with various choices. For example in AirBnB, although some amenities in a property (attributes of the property) are fixed, others are relatively flexible and can be provided without significant effort. Providing an amenity is usually associated with a cost. Naturally different sets of amenities may have a different gains for a host. Consequently, given a limited budget, deciding which amenities (attributes) to offer is challenging. In this paper, we formally introduce and define the problem of Gain Maximization over Flexible Attributes (GMFA). We first prove that the problem is NP-hard and show that identifying an approximate algorithm with a constant approximate ratio is unlikely. We then provide a practically efficient exact algorithm to the GMFA problem for the general class of monotonic gain functions, which quantify the benefit of sets of attributes. As the next part of our contribution, we focus on the design of a practical gain function for GMFA. We introduce the notion of frequent-item based count (FBC), which utilizes the existing tuples in the database to define the notion of gain, and propose an efficient algorithm for computing it. We present the results of a comprehensive experimental evaluation of the proposed techniques on real dataset from AirBnB and demonstrate the practical relevance and utility of our proposal.
Open and anonymous nature of peer to peer networks provides an opportunity to malicious peers to behave unpredictably in the network. This leads the lack of trust among the peers. To control the behavior of peers in the network, reputation system can be used. In a reputation system, aggregation of trust is a primary issue. Algorithm for aggregation of trust should be designed such that, it can converge to a certain finite value. Absolute Trust is one of the algorithm, which is used for the aggregation of trust in peer to peer networks. In this letter, we present the generalized analysis of convergence of the Absolute Trust algorithm.
The dynamic behavior of a multiagent system in which the agent size $s_{i}$ is variable it is studied along a Lotka-Volterra approach. The agent size has hereby for meaning the fraction of a given market that an agent is able to capture (market share). A Lotka-Volterra system of equations for prey-predator problems is considered, the competition factor being related to the difference in size between the agents in a one-on-one competition. This mechanism introduces a natural self-organized dynamic competition among agents. In the competition factor, a parameter $sigma$ is introduced for scaling the intensity of agent size similarity, which varies in each iteration cycle. The fixed points of this system are analytically found and their stability analyzed for small systems (with $n=5$ agents). We have found that different scenarios are possible, from chaotic to non-chaotic motion with cluster formation as function of the $sigma$ parameter and depending on the initial conditions imposed to the system. The present contribution aim is to show how a realistic though minimalist nonlinear dynamics model can be used to describe market competition (companies, brokers, decision makers) among other opinion maker communities.
168 - Calvin Newport 2017
In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise $0$ bits to their neighbors in each round, and the case where nodes can advertise $1$ bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا