No Arabic abstract
We study the spectrum of the long-range supersymmetric su$(m)$ $t$-$J$ model of Kuramoto and Yokoyama in the presence of an external magnetic field and a charge chemical potential. To this end, we first establish the precise equivalence of a large class of models of this type to a family of su$(1|m)$ spin chains with long-range exchange interactions and a suitable chemical potential term. We exploit this equivalence to compute in closed form the partition function of the long-range $t$-$J$ model, which we then relate to that of an inhomogeneous vertex model with simple interactions. From the structure of this partition function we are able to deduce an exact formula for the restricted partition function of the long-range $t$-$J$ model in subspaces with well-defined magnon content in terms of its analogue for the equivalent vertex model. This yields a complete analytical description of the spectrum in the latter subspaces, including the precise degeneracy of each level, by means of the supersymmetric version of Haldanes motifs and their related skew Young tableaux. As an application, we determine the structure of the motifs associated with the ground state of the spin $1/2$ model in the thermodynamic limit in terms of the magnetic field strength and the charge chemical potential. This leads to a complete characterization of the distinct ground state phases, determined by their spin content, in terms of the magnetic field strength and the charge chemical potential.
We analyze the thermodynamics and the critical behavior of the supersymmetric su($m$) $t$-$J$ model with long-range interactions. Using the transfer matrix formalism, we obtain a closed-form expression for the free energy per site both for a finite number of sites and in the thermodynamic limit. Our approach, which is different from the usual ones based on the asymptotic Bethe ansatz and generalized exclusion statistics, can in fact be applied to a large class of models whose spectrum is described in terms of supersymmetric Young tableaux and their associated Haldane motifs. In the simplest and most interesting su(2) case, we identify the five ground state phases of the model and derive the complete low-temperature asymptotic series of the free energy per site, the magnetization and charge densities, and their susceptibilities. We verify the models characteristic spin-charge separation at low temperatures, and show that it holds to all orders in the asymptotic expansion. Using the low-temperature asymptotic expansions of the free energy, we also analyze the critical behavior of the model in each of its ground state phases. While the standard su(1|2) phase is described by two independent CFTs with central charge $c=1$ in correspondence with the spin and charge sectors, we find that the low-energy behavior of the su(2) and su(1|1) phases is that of a single $c=1$ CFT. We show that the model exhibits an even richer behavior on the boundary between zero-temperature phases, where it can be non-critical but gapless, critical in the spin sector but not in the charge one, or critical with central charge $c=3/2$.
We introduce a new class of open, translationally invariant spin chains with long-range interactions depending on both spin permutation and (polarized) spin reversal operators, which includes the Haldane-Shastry chain as a particular degenerate case. The new class is characterized by the fact that the Hamiltonian is invariant under twisted translations, combining an ordinary translation with a spin flip at one end of the chain. It includes a remarkable model with elliptic spin-spin interactions, smoothly interpolating between the XXX Heisenberg model with anti-periodic boundary conditions and a new open chain with sites uniformly spaced on a half-circle and interactions inversely proportional to the square of the distance between the spins. We are able to compute in closed form the partition function of the latter chain, thereby obtaining a complete description of its spectrum in terms of a pair of independent su(1|1) and ${rm su}(m/2)$ motifs when the number $m$ of internal degrees of freedom is even. This implies that the even $m$ model is invariant under the direct sum of the Yangians $Y$(gl(1|1)) and $Y$(gl$(0|m/2)$). We also analyze several statistical properties of the new chains spectrum. In particular, we show that it is highly degenerate, which strongly suggests the existence of an underlying (twisted) Yangian symmetry also for odd $m$.
This work is dedicated to the study of a supersymmetric quantum spherical spin system with short-range interactions. We examine the critical properties both a zero and finite temperature. The model undergoes a quantum phase transition at zero temperature without breaking supersymmetry. At finite temperature the supersymmetry is broken and the system exhibits a thermal phase transition. We determine the critical dimensions and compute critical exponents. In particular, we find that the model is characterized by a dynamical critical exponent $z=2$. We also investigate properties of correlations in the one-dimensional lattice. Finally, we explore the connection with a nonrelativistic version of the supersymmetric $O(N)$ nonlinear sigma model and show that it is equivalent to the system of spherical spins in the large $N$ limit.
Using a description of the Levin-Wen model excitations in terms of Wilson lines, we compute the degeneracy of the energy levels for any input anyon theory and for any trivalent graph embedded on any (orientable) compact surface. This result allows one to obtain the finite-size and finite-temperature partition function and to show that there are no thermal phase transitions.
We present numerical solutions of the spectral functions of $t$-$J$ models with random and all-to-all exchange and global SU($M$) spin rotation symmetry. The solutions are obtained from the saddle-point equations of the large volume limit, followed by the large $M$ limit. These saddle point equations involve Greens functions for fractionalized spinons and holons carrying emergent U(1) gauge charges, obeying relations similar to those of the Sachdev-Ye-Kitaev (SYK) models. The low frequency spectral functions are compared with an analytic analysis of the operator scaling dimensions, with good agreement. We also compute the low frequency and temperature behavior of gauge-invariant observables: the electron Greens function, the local spin susceptibility and the optical conductivity; along with the temperature dependence of the d.c. resistivity. The time reparameterization soft mode (equivalent to the boundary graviton in holographically dual models of two-dimensional quantum gravity) makes important contributions to all observables, and provides a linear-in-temperature contribution to the d.c. resistivity.