Do you want to publish a course? Click here

Ultraviolet Completion of a Composite Asymmetric Dark Matter Model with a Dark Photon Portal

150   0   0.0 ( 0 )
 Added by Shin Kobayashi
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Composite asymmetric dark matter scenarios naturally explain why the dark matter mass density is comparable with the visible matter mass density. Such scenarios generically require some entropy transfer mechanism below the composite scale; otherwise, their late-time cosmology is incompatible with observations. A tiny kinetic mixing between a dark photon and the visible photon is a promising example of the low-energy portal. In this paper, we demonstrate that grand unifications in the dark and the visible sectors explain the origin of the tiny kinetic mixing. We particularly consider an ultraviolet completion of a simple composite asymmetric dark matter model, where asymmetric dark matter carries a $B-L$ charge. In this setup, the longevity of asymmetric dark matter is explained by the $B-L$ symmetry, while the dark matter asymmetry originates from the $B-L$ asymmetry generated by thermal leptogenesis. In our minimal setup, the Standard Model sector and the dark sector are unified into $SU(5)_mathrm{GUT} times SU(4)_mathrm{DGUT}$ gauge theories, respectively. This model generates required $B-L$ portal operators while suppressing unwanted higher-dimensional operators that could wash out the generated $B-L$ asymmetry.



rate research

Read More

Asymmetric dark matter (ADM) is an attractive framework relating the observed baryon asymmetry of the Universe to the dark matter density. A composite particle in a new strong dynamics is a promising candidate for ADM as the strong dynamics naturally explains the ADM mass in the GeV range. Its large annihilation cross section due to the strong dynamics leaves the asymmetric component to be dominant over the symmetric component. In such composite ADM scenarios, the dark sector has a relatively large entropy density in the early Universe. The large dark sector entropy results in the overclosure of the Universe or at best contradicts with the observations of the cosmic microwave background and the successful Big-Bang Nucleosynthesis. Thus, composite ADM models generically require some portal to transfer the entropy of the dark sector into the Standard Model sector. In this paper, we consider a dark photon portal with a mass in the sub-GeV range and kinetic mixing with the Standard Model photon. We investigate the viable parameter space of the dark photon in detail, which can find broad applications to dark photon portal models. We also provide a simple working example of composite ADM with a dark photon portal. Our model is compatible with thermal leptogenesis and $B - L$ symmetry. By taking into account the derived constraints, we show that the parameter space is largely tested by direct detection experiments.
The asymmetric dark matter (ADM) scenario can solve the coincidence problem between the baryon and the dark matter (DM) abundance when the DM mass is of ${cal O}(1),$GeV. In the ADM scenarios, composite dark matter is particularly motivated, as it can naturally provide the DM mass in the ${cal O}(1),$GeV range and a large annihilation cross section simultaneously. In this paper, we discuss the indirect detection constraints on the composite ADM model. The portal operators connecting the $B-L$ asymmetries in the dark and the Standard Model(SM) sectors are assumed to be generated in association with the seesaw mechanism. In this model, composite dark matter inevitably obtains a tiny Majorana mass which induces a pair-annihilation of ADM at late times. We show that the model can be efficiently tested by the searches for the $gamma$-ray from the dwarf spheroidal galaxies and the interstellar electron/positron flux.
The asymmetric dark matter (ADM) scenario solves the baryon-dark matter coincidence problem when the dark matter (DM) mass is of $mathcal{O}(1)$GeV. Composite ADM models based on QCD-like strong dynamics are particularly motivated since the strong dynamics naturally provides the DM mass of $mathcal{O}(1)$GeV and the large annihilation cross-section simultaneously. In those models, the sub-GeV dark photon often plays an essential role in transferring the excessive entropy in the dark sector into the visible sector, i.e., the Standard Model sector. This paper constructs a chiral composite ADM model where the $U(1)_D$ gauge symmetry is embedded into the chiral flavor symmetry. Due to the dynamical breaking of the chiral flavor symmetry, the model naturally provides the masses of the dark photon and the dark pions in the sub-GeV range, both of which play crucial roles for a successful ADM model.
We study a simple model that can give rise to isospin-violating interactions of Dirac fermion asymmetric dark matter to protons and neutrons through the interference of a scalar and U(1)$$ gauge boson contribution. The model can yield a large suppression of the elastic scattering cross section off Xenon relative to Silicon thus reconciling CDMS-Si and LUX results while being compatible with LHC findings on the 126 GeV Higgs, electroweak precision tests and flavour constraints.
We argue that extensions of the SM with a warped extra dimension, together with a new $mathbb{Z}_2$-odd scalar singlet, provide a natural explanation not only for the hierarchy problem but also for the nature of fermion bulk masses and the observed dark matter relic abundance. In particular, the Kaluza-Klein excitations of the new scalar particle, which is required to naturally obtain fermion bulk masses through Yukawa-like interactions, can be the leading portal to any fermion propagating into the bulk of the extra dimension and playing the role of dark matter. Moreover, such scalar excitations will necessarily mix with the Higgs boson, leading to modifications of the Higgs couplings and branching ratios, and allowing the Higgs to mediate the coannihilation of the fermionic dark matter. We study these effects and explore the viability of fermionic dark matter in the presence of these new heavy scalar mediators both in the usual freeze-out scenario and in the case where the freeze-out happens during an early period of matter domination.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا