Do you want to publish a course? Click here

On the multi-symplectic structure of Boussinesq-type systems. I: Derivation and mathematical properties

110   0   0.0 ( 0 )
 Added by Denys Dutykh
 Publication date 2018
  fields Physics
and research's language is English
 Authors Angel Duran




Ask ChatGPT about the research

The Boussinesq equations are known since the end of the XIXst century. However, the proliferation of various textsc{Boussinesq}-type systems started only in the second half of the XXst century. Today they come under various flavours depending on the goals of the modeller. At the beginning of the XXIst century an effort to classify such systems, at least for even bottoms, was undertaken and developed according to both different physical regimes and mathematical properties, with special emphasis, in this last sense, on the existence of symmetry groups and their connection to conserved quantities. Of particular interest are those systems admitting a symplectic structure, with the subsequent preservation of the total energy represented by the Hamiltonian. In the present paper a family of Boussinesq-type systems with multi-symplectic structure is introduced. Some properties of the new systems are analyzed: their relation with already known Boussinesq models, the identification of those systems with additional Hamiltonian structure as well as other mathematical features like well-posedness and existence of different types of solitary-wave solutions. The consistency of multi-symplectic systems with the full Euler equations is also discussed.



rate research

Read More

In this paper we consider the numerical approximation of systems of Boussinesq-type to model surface wave propagation. Some theoretical properties of these systems (multi-symplectic and Hamiltonian formulations, well-posedness and existence of solitary-wave solutions) were previously analyzed by the authors in Part I. As a second part of the study, considered here is the construction of geometric schemes for the numerical integration. By using the method of lines, the geometric properties, based on the multi-symplectic and Hamiltonian structures, of different strategies for the spatial and time discretizations are discussed and illustrated.
Starting from the construction of the free quantum scalar field of mass $mgeq 0$ we give mathematically precise and rigoro
82 - H. A. Erbay , S. Erbay , A. Erkip 2016
In this paper we derive generalized forms of the Camassa-Holm (CH) equation from a Boussinesq-type equation using a two-parameter asymptotic expansion based on two small parameters characterizing nonlinear and dispersive effects and strictly following the arguments in the asymptotic derivation of the classical CH equation. The resulting equations generalize the CH equation in two different ways. The first generalization replaces the quadratic nonlinearity of the CH equation with a general power-type nonlinearity while the second one replaces the dispersive terms of the CH equation with fractional-type dispersive terms. In the absence of both higher-order nonlinearities and fractional-type dispersive effects, the generalized equations derived reduce to the classical CH equation that describes unidirectional propagation of shallow water waves. The generalized equations obtained are compared to similar equations available in the literature, and this leads to the observation that the present equations have not appeared in the literature.
We consider a class of Boussinesq systems of Bona-Smith type in two space dimensions approximating surface wave flows modelled by the three-dimensional Euler equations. We show that various initial-boundary-value problems for these systems, posed on a bounded plane domain are well posed locally in time. In the case of reflective boundary conditions, the systems are discretized by a modified Galerkin method which is proved to converge in $L^2$ at an optimal rate. Numerical experiments are presented with the aim of simulating two-dimensional surface waves in complex plane domains with a variety of initial and boundary conditions, and comparing numerical solutions of Bona-Smith systems with analogous solutions of the BBM-BBM system.
97 - Hoai-Minh Nguyen 2018
Negative index materials are artificial structures whose refractive index has a negative value over some frequency range. These materials were postulated and investigated theoretically by Veselago in 1964 and were confirmed experimentally by Shelby, Smith, and Schultz in 2001. New fabrication techniques now allow for the construction of negative index materials at scales that are interesting for applications, which has made them a very active topic of investigation. In this paper, we report various mathematical results on the properties of negative index materials and their applications. The topics discussed herein include superlensing using complementary media, cloaking using complementary media, cloaking an object via anomalous localized resonance, and the well-posedness and the finite speed propagation in media consisting of dispersive metamaterials. Some of the results have been refined and have simpler proofs than the original ones.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا