Do you want to publish a course? Click here

Extraordinarily transparent compact metallic metamaterials

61   0   0.0 ( 0 )
 Added by Samuel John Palmer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metals are highly opaque, yet we show that densely packed arrays of metallic nanoparticles can be more transparent to infrared radiation than dielectrics such as germanium, even for arrays that are over 75% metal by volume. Despite strong interactions between the metallic particles, these arrays form effective dielectrics that are virtually dispersion-free, making possible the design of optical components that are achromatic over ultra-broadband ranges of wavelengths from a few microns up to millimetres or more. Furthermore, the local refractive indices may be tuned by altering the size, shape, and spacing of the nanoparticles, allowing the design of gradient-index lenses that guide and focus light on the microscale. The electric field is also strongly concentrated in the gaps between the metallic nanoparticles, and the simultaneous focusing and squeezing of the electric field produces strong `doubly-enhanced hotspots which could boost measurements made using infrared spectroscopy and other non-linear processes over a broad range of frequencies, with minimal heat production.



rate research

Read More

Alternative designs to an electric-LC (ELC) resonator, which is a type of metamaterial inclusion, are presented in this article. Fitting the resonator with an interdigital capacitor (IDC) helps to increase the total capacitance of the structure. In effect, its resonance frequency is shifted downwards. This implies a decreased overall resonator size with respect to its operating wavelength. As a result, the metamaterial, composed of an array of IDC-loaded ELC resonators with their collective electromagnetic response, possesses improved homogeneity and hence is less influenced by diffraction effects of individual cells. The impact of incorporating an IDC into ELC resonators in terms of the electrical size at resonance and other relevant properties are investigated through both simulation and experiment.
Energy-efficient programmable photonic integrated circuits (PICs) are the cornerstone of on-chip classical and quantum optical technologies. Optical phase shifters constitute the fundamental building blocks which enable these programmable PICs. Thus far, carrier modulation and thermo-optical effect are the chosen phenomena for ultrafast and low-loss phase shifters, respectively; however, the state and information they carry are lost once the power is turned off-they are volatile. The volatility not only compromises energy efficiency due to their demand for constant power supply, but also precludes them from emerging applications such as in-memory computing. To circumvent this limitation, we introduce a novel phase shifting mechanism that exploits the nonvolatile refractive index modulation upon structural phase transition of Sb$_{2}$Se$_{3}$, an ultralow-loss phase change material. A zero-static power and electrically-driven phase shifter was realized on a foundry-processed silicon-on-insulator platform, featuring record phase modulation up to 0.09 $pi$/$mu$m and a low insertion loss of 0.3 dB/$pi$. We further pioneered a one-step partial amorphization scheme to enhance the speed and energy efficiency of PCM devices. A diverse cohort of programmable photonic devices were demonstrated based on the ultracompact PCM phase shifter.
This paper presents the authors vision of the emerging field of spacetime metamaterials in a cohesive and pedagogical perspective. For this purpose, it systematically builds up the physics, modeling and applications of these media upon the foundation of their pure-space and pure-time counterparts.
The dielectric permittivity of a material encapsulates the essential physics of light-matter interaction into the materials local response to optical excitation. Dynamic, photo-induced modulation of the permittivity can enable an unprecedented level of control over the phase, amplitude, and polarization of light. Therefore, the detailed dynamic characterization of technology-relevant materials with substantially tunable optical properties and fast response times is a crucial step in the realization of tunable optical devices. This work reports on the extraordinarily large permittivity changes in zinc oxide thin films (up to -3.6 relative change in the real part of the dielectric permittivity at 1600 nm wavelength) induced by optically generated free carriers. We demonstrate broadband reflectance modulation up to 70 percent in metal-backed oxide mirrors at the telecommunication wavelengths, with picosecond-scale relaxation times. The epsilon near zero points of the films can be dynamically shifted from 8.5 microns to 1.6 microns by controlling the pump fluence. Finally, we show that the modulation can be selectively enhanced at specific wavelengths employing metal-backed ZnO disks while maintaining picosecond-scale switching times. This work provides insights into the free-carrier assisted permittivity modulation in zinc oxide and could enable the realization of novel dynamic devices for beam-steering, polarizers, and spatial light modulators.
82 - Younes Radi , Viktar Asadchy , 2013
In this paper we introduce the concept of metasurfaces which are fully transparent when looking from one of the two sides of the sheet and have controllable functionalities for waves hitting the opposite side (one-way transparent sheets). We address the question on what functionalities are allowed, considering limitations due to reciprocity and passivity. In particular, we have found that it is possible to realize one-way transparent sheets which have the properties of a twist-polarizer in reflection or transmission when illuminated from the other side. Also one-way transparent sheets with controllable co-polarized reflection and transmission from the opposite side are feasible. We show that particular non-reciprocal magneto-electric coupling inside the sheet is necessary to realize lossless non-active transparent sheets. Furthermore, we derive the required polarizabilities of constituent dipole particles such that the layers composed of them form one-way transparent sheets. We conclude with design and simulations of an example of a nonreciprocal one-way transparent sheet functioning as an isolating twist-polarizer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا