The cross section of the process $e^{+} e^{-} rightarrow K^{+} K^{-}$ is measured at a number of center-of-mass energies $sqrt{s}$ from 2.00 to 3.08 GeV with the BESIII detector at the Beijing Electron Positron Collider (BEPCII). The results provide the best precision achieved so far. A resonant structure around 2.2 GeV is observed in the cross section line shape. A Breit-Wigner fit yields a mass of $M=2239.2 pm 7.1 pm 11.3$~and a width of $Gamma=139.8pm12.3pm20.6$ MeV, where the first uncertainties are statistical and the second ones are systematic. In addition, the time-like electromagnetic form factor of the kaon is determined at the individual center-of-mass energy points.
The cross sections of the process $e^{+}e^{-} to K_{S}^{0}K_{L}^{0}$ are measured at fifteen center-of-mass energies $sqrt{s}$ from $2.00$ to $3.08~{rm GeV}$ with the BESIII detector at the Beijing Electron Positron Collider (BEPCII). The results are found to be consistent with those obtained by BaBar. A resonant structure around $2.2~{rm GeV}$ is observed, with a mass and width of $2273.7 pm 5.7 pm 19.3~{rm MeV}/c^2$ and $86 pm 44 pm 51~{rm MeV}$, respectively, where the first uncertainties are statistical and the second ones are systematic. The product of its radiative width ($Gamma_{e^+e^-}$) with its branching fraction to $K_{S}^{0}K_{L}^{0}$ ($Br_{K_{S}^{0}K_{L}^{0}}$) is $0.9 pm 0.6 pm 0.7~{rm eV}$.
The cross section of the process $e^+e^- rightarrow etaJ/psi$ is measured at center-of-mass energies from $sqrt{s} =$ 4.178 to 4.600 GeV using data samples corresponding to a total integrated luminosity of 11 fb$^{-1}$ collected with the BESIII detector operating at the BEPCII storage ring. The dependence of the cross section on $sqrt{s}$ shows an enhancement around $4.2$ GeV. While the shape of the cross section cannot be fully explained with a single $psi(4160)$ or $psi(4260)$ state, a coherent sum of the two states does provide a reasonable description of the data.
We measure the Born cross sections of the process $e^{+}e^{-} to K^{+}K^{-}K^{+}K^{-}$ at center-of-mass (c.m.) energies, $sqrt{s}$, between 2.100 and 3.080 GeV. The data were collected using the BESIII detector at the BEPCII collider. An enhancement at $sqrt{s}= 2.232$ GeV is observed, very close to the $e^{+}e^{-} to Lambda overline{Lambda}$ production threshold. A similar enhancement at the same c.m. energy is observed in the $e^{+}e^{-} to phi K^{+}K^{-}$ cross section. The energy dependence of the $K^{+}K^{-}K^{+}K^{-}$ and $phi K^{+}K^{-}$ cross sections differs significantly from that of $e^{+}e^{-} to phi pi^{+}pi^{-}$.
The $e^+e^-to K^+K^-$ cross section is measured in the center-of-mass energy range $1.05-2.00$ GeV at the SND detector. The measurement is based on data with an integrated luminosity of 35 pb$^{-1}$ collected at the VEPP-2000 $e^+e^-$-collider. The obtained results are consistent with the previous most accurate data obtained in the BABAR experiment and have a comparable accuracy.
Using data samples with a total integrated luminosity of $20.1~rm fb^{-1}$ collected by the BESIII detector operating at the BEPCII collider, the cross section of the process $e^+e^- rightarrow pi^+pi^-psi(3686)$ is measured at center-of-mass energies between 4.0076 and 4.6984 GeV. The measured cross section is consistent with previous results, but with much improved precision. A fit to the measured energy-dependent cross section, which includes three Breit-Wigner functions and a non-resonant contribution, confirms the existence of the charmonium-like states $Y(4220)$, $Y(4390)$, and $Y(4660)$. This is the first observation of the $Y(4660)$ at the BESIII experiment.