No Arabic abstract
There are two schools of measurement-only quantum computation. The first ([11]) using prepared entanglement (cluster states) and the second ([4]) using collections of anyons, which according to how they were produced, also have an entanglement pattern. We abstract the common principle behind both approaches and find the notion of a graph or even continuous family of equiangular projections. This notion is the leading character in the paper. The largest continuous family, in a sense made precise in Corollary 4.2, is associated with the octonions and this example leads to a universal computational scheme. Adiabatic quantum computation also fits into this rubric as a limiting case: nearby projections are nearly equiangular, so as a gapped ground state space is slowly varied the corrections to unitarity are small.
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(m,n)$. We show how the computation of $R(m,n)$ can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for $5leq sleq 7$. We then discuss the algorithms experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class QMA.
The fundamental dynamics of quantum particles is neutral with respect to the arrow of time. And yet, our experiments are not: we observe quantum systems evolving from the past to the future, but not the other way round. A fundamental question is whether it is in principle possible to probe a quantum dynamics in the backward direction, or in more general combinations of the forward and the backward direction. To answer this question, we characterise all possible time-reversals that satisfy four natural requirements and we identify the largest set of quantum processes that can in principle be probed in both time directions. Then, we show that quantum theory is compatible with the existence of a new kind of operations where the arrow of time is indefinite. We explicitly construct one such operation, called the quantum time flip, and show that it cannot be realised by any quantum circuit with a definite direction of time. The quantum time flip offers an advantage in a game where a referee challenges a player to identify a hidden relation between two gates, and can be experimentally simulated with photonic systems, shedding light on the information-processing capabilities of exotic scenarios in which the arrow of time is in a quantum superposition.
In an abstract sense, quantum data hiding is the manifestation of the fact that two classes of quantum measurements can perform very differently in the task of binary quantum state discrimination. We investigate this phenomenon in the context of continuous variable quantum systems. First, we look at the celebrated case of data hiding against the set of local operations and classical communication. While previous studies have placed upper bounds on its maximum efficiency in terms of the local dimension and are thus not applicable to continuous variable systems, we tackle this latter case by establishing more general bounds that rely solely on the local mean photon number of the states employed. Along the way, we perform a quantitative analysis of the error introduced by the non-ideal Braunstein--Kimble quantum teleportation protocol, determining how much two-mode squeezing and local detection efficiency is needed in order to teleport an arbitrary local state of known mean energy with a prescribed accuracy. Finally, following a seminal proposal by Winter, we look at data hiding against the set of Gaussian operations and classical computation, providing the first example of a relatively simple scheme that works with a single mode only. The states employed can be generated from a two-mode squeezed vacuum by local photon counting; the larger the squeezing, the higher the efficiency of the scheme.
We cast the quantum chemistry problem of computing bound states as that of solving a set of auxiliary eigenvalue problems for a family of parameterized compact integral operators. The compactness of operators assures that their spectrum is discrete and bounded with the only possible accumulation point at zero. We show that, by changing the parameter, we can always find the bound states, i.e., the eigenfunctions that satisfy the original equations and are normalizable. While for the non-relativistic equations these properties may not be surprising, it is remarkable that the same holds for the relativistic equations where the spectrum of the original relativistic operators does not have a lower bound. We demonstrate that starting from an arbitrary initialization of the iteration leads to the solution, as dictated by the properties of compact operators.
We import the tools of Morse theory to study quantum adiabatic evolution, the core mechanism in adiabatic quantum computations (AQC). AQC is computationally equivalent to the (pre-eminent paradigm) of the Gate model but less error-prone, so it is ideally suitable to practically tackle a large number of important applications. AQC remains, however, poorly understood theoretically and its mathematical underpinnings are yet to be satisfactorily identified. Through Morse theory, we bring a novel perspective that we expect will open the door for using such mathematics in the realm of quantum computations, providing a secure foundation for AQC. Here we show that the singular homology of a certain cobordism, which we construct from the given Hamiltonian, defines the adiabatic evolution. Our result is based on E. Wittens construction for Morse homology that was derived in the very different context of supersymmetric quantum mechanics. We investigate how such topological description, in conjunction with Gauss-Bonnet theorem and curvature based reformulation of Morse lemma, can be an obstruction to any computational advantage in AQC. We also explore Conley theory, for the sake of completeness, in advance of any known practical Hamiltonian of interest. We conclude with the instructive case of the ferromagnetic $p-$spin where we show that changing its first order quantum transition (QPT) into a second order QPT, by adding non-stoquastic couplings, amounts to homotopically deform the initial surface accompanied with birth of pairs of critical points. Their number reaches its maximum when the system is fully non-stoquastic. In parallel, the total Gaussian curvature gets redistributed (by the Gauss--Bonnet theorem) around the new neighbouring critical points, which weakens the severity of the QPT.