No Arabic abstract
We consider how recent experimental progress on deterministic solid state spin-photon interfaces enable the construction of a number of key elements of quantum networks. After reviewing some of the recent experimental achievements, we discuss their integration into Bell state analyzers, quantum non-demolition detection, and photonic cluster state generation. Finally, we outline how these elements can be used for long-distance entanglement generation and quantum key distribution in a quantum network.
We propose a novel one-way quantum repeater architecture based on photonic tree-cluster states. Encoding a qubit in a photonic tree-cluster protects the information from transmission loss and enables long-range quantum communication through a chain of repeater stations. As opposed to conventional approaches that are limited by the two-way communication time, the overall transmission rate of the current quantum repeater protocol is determined by the local processing time enabling very high communication rates. We further show that such a repeater can be constructed with as little as two stationary qubits and one quantum emitter per repeater station, which significantly increases the experimental feasibility. We discuss potential implementations with diamond defect centers and semiconductor quantum dots efficiently coupled to photonic nanostructures and outline how such systems may be integrated into repeater stations.
Semiconductor quantum dots are promising constituents for future quantum communication. Although deterministic, fast, efficient, coherent, and pure emission of entangled photons has been realized, implementing a practical quantum network remains outstanding. Here we explore the limits for sources of polarization-entangled photons from the commonly used biexciton-exciton cascade. We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks. The consequences of device fabrication, dynamic tuning techniques and statistical effects for practical network applications are investigated. We identify the critical device parameters and present a numerical model for benchmarking the device scalability in order to bring the realization of distributed semiconductor-based quantum networks one step closer to reality.
We introduce a method for high-fidelity quantum state transduction between a superconducting microwave qubit and the ground state spin system of a solid-state artificial atom, mediated via an acoustic bus connected by piezoelectric transducers. Applied to present-day experimental parameters for superconducting circuit qubits and diamond silicon vacancy centers in an optimized phononic cavity, we estimate quantum state transduction with fidelity exceeding 99% at a MHz-scale bandwidth. By combining the complementary strengths of superconducting circuit quantum computing and artificial atoms, the hybrid architecture provides high-fidelity qubit gates with long-lived quantum memory, high-fidelity measurement, large qubit number, reconfigurable qubit connectivity, and high-fidelity state and gate teleportation through optical quantum networks.
A single photon source is realized with a cold atomic ensemble ($^{87}$Rb atoms). In the experiment, single photons, which is initially stored in an atomic quantum memory generated by Raman scattering of a laser pulse, can be emitted deterministically at a time-delay in control. It is shown that production rate of single photons can be enhanced by a feedback circuit considerably while the single-photon quality is conserved. Thus our present single-photon source is well suitable for future large-scale realization of quantum communication and linear optical quantum computation.
We introduce a scheme to perform quantum-information processing that is based on a hybrid spin-photon qubit encoding. The proposed qubits consist of spin-ensembles coherently coupled to microwave photons in coplanar waveguide resonators. The quantum gates are performed solely by shifting the resonance frequencies of the resonators on a ns timescale. An additional cavity containing a Cooper-pair box is exploited as an auxiliary degree of freedom to implement two-qubit gates. The generality of the scheme allows its potential implementation with a wide class of spin systems.