We introduce a scheme to perform quantum-information processing that is based on a hybrid spin-photon qubit encoding. The proposed qubits consist of spin-ensembles coherently coupled to microwave photons in coplanar waveguide resonators. The quantum gates are performed solely by shifting the resonance frequencies of the resonators on a ns timescale. An additional cavity containing a Cooper-pair box is exploited as an auxiliary degree of freedom to implement two-qubit gates. The generality of the scheme allows its potential implementation with a wide class of spin systems.
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubits are capacitively coupled to a single high-Q superconducting coplanar resonator. In this system, logical gates are realized by driving the resonator with microwave fields. Advantages of this architecture are that it allows for multi-qubit gates between non-nearest qubits and for the realization of gates in parallel, opening the possibility of fault-tolerant quantum computation with superconduting circuits. In this paper, we focus on one and two-qubit gates that do not require moving away from the charge-degeneracy `sweet spot. This is advantageous as it helps to increase the qubit dephasing time and does not require modification of the original circuit QED. However these gates can, in some cases, be slower than those that do not use this constraint. Five types of two-qubit gates are discussed, these include gates based on virtual photons, real excitation of the resonator and a gate based on the geometric phase. We also point out the importance of selection rules when working at the charge degeneracy point.
Measurement of the energy eigenvalues (spectrum) of a multi-qubit system has recently become possible by qubit tunneling spectroscopy (QTS). In the standard QTS experiments, an incoherent probe qubit is strongly coupled to one of the qubits of the system in such a way that its incoherent tunneling rate provides information about the energy eigenvalues of the original (source) system. In this paper, we generalize QTS by coupling the probe qubit to many source qubits. We show that by properly choosing the couplings, one can perform projective measurements of the source system energy eigenstates in an arbitrary basis, thus performing quantum eigenstate tomography. As a practical example of a limited tomography, we apply our scheme to probe the eigenstates of a kink in a frustrated transverse Ising chain.
We study quantum information properties of a seven-level system realized by a particle in an one-dimensional square-well trap. Features of encodings of seven-level systems in a form of three-qubit or qubit-qutrit systems are discussed. We use the three-qubit encoding of the system in order to investigate subadditivity and strong subadditivity conditions for the thermal state of the particle. The qubit-qutrit encoding is employed to suggest a single qudit algorithm for calculation of parity of a bit string. Obtained results indicate on the potential resource of multilevel systems for realization of quantum information processing.
We provide a characterization and analysis of the effects of dissipation on oscillator assisted (qubus) quantum gates. The effects can be understood and minimized by looking at the dynamics of the signal coherence and its entanglement with the continuous variable probe. Adding loss in between successive interactions we obtain the effective quantum operations, providing a novel approach to loss analysis in such hybrid settings. We find that in the presence of moderate dissipation the gate can operate with a high fidelity. We also show how a simple iteration scheme leads to independent single qubit dephasing, while retaining the conditional phase operation regardless of the amount of loss incurred by the probe.
This thesis reports advances in the theory of design, characterization and simulation of multi-photon multi-channel interferometers. I advance the design of interferometers through an algorithm to realize an arbitrary discrete unitary transformation on the combined spatial and internal degrees of freedom of light. This procedure effects an arbitrary $n_{s}n_{p}times n_{s}n_{p}$ unitary matrix on the state of light in $n_{s}$ spatial and $n_{p}$ internal modes. I devise an accurate and precise procedure for characterizing any multi-port linear optical interferometer using one- and two-photon interference. Accuracy is achieved by estimating and correcting systematic errors that arise due to spatiotemporal and polarization mode mismatch. Enhanced accuracy and precision are attained by fitting experimental coincidence data to a curve simulated using measured source spectra. The efficacy of our characterization procedure is verified by numerical simulations. I develop group-theoretic methods for the analysis and simulation of linear interferometers. I devise a graph-theoretic algorithm to construct the boson realizations of the canonical SU$(n)$ basis states, which reduce the canonical subgroup chain, for arbitrary $n$. The boson realizations are employed to construct $mathcal{D}$-functions, which are the matrix elements of arbitrary irreducible representations, of SU$(n)$ in the canonical basis. I show that immanants of principal submatrices of a unitary matrix $T$ are a sum of the diagonal $mathcal{D}(Omega)$-functions of group element $Omega$ over $t$ determined by the choice of submatrix and over the irrep $(lambda)$ determined by the immanant under consideration. The algorithm for $mathrm{SU}(n)$ $mathcal{D}$-function computation and the results connecting these functions with immanants open the possibility of group-theoretic analysis and simulation of linear optics.