No Arabic abstract
Despite the great success object detection and segmentation models have achieved in recognizing individual objects in images, performance on cognitive tasks such as image caption, semantic image retrieval, and visual QA is far from satisfactory. To achieve better performance on these cognitive tasks, merely recognizing individual object instances is insufficient. Instead, the interactions between object instances need to be captured in order to facilitate reasoning and understanding of the visual scenes in an image. Scene graph, a graph representation of images that captures object instances and their relationships, offers a comprehensive understanding of an image. However, existing techniques on scene graph generation fail to distinguish subjects and objects in the visual scenes of images and thus do not perform well with real-world datasets where exist ambiguous object instances. In this work, we propose a novel scene graph generation model for predicting object instances and its corresponding relationships in an image. Our model, SG-CRF, learns the sequential order of subject and object in a relationship triplet, and the semantic compatibility of object instance nodes and relationship nodes in a scene graph efficiently. Experiments empirically show that SG-CRF outperforms the state-of-the-art methods, on three different datasets, i.e., CLEVR, VRD, and Visual Genome, raising the Recall@100 from 24.99% to 49.95%, from 41.92% to 50.47%, and from 54.69% to 54.77%, respectively.
Despite recent advancements in single-domain or single-object image generation, it is still challenging to generate complex scenes containing diverse, multiple objects and their interactions. Scene graphs, composed of nodes as objects and directed-edges as relationships among objects, offer an alternative representation of a scene that is more semantically grounded than images. We hypothesize that a generative model for scene graphs might be able to learn the underlying semantic structure of real-world scenes more effectively than images, and hence, generate realistic novel scenes in the form of scene graphs. In this work, we explore a new task for the unconditional generation of semantic scene graphs. We develop a deep auto-regressive model called SceneGraphGen which can directly learn the probability distribution over labelled and directed graphs using a hierarchical recurrent architecture. The model takes a seed object as input and generates a scene graph in a sequence of steps, each step generating an object node, followed by a sequence of relationship edges connecting to the previous nodes. We show that the scene graphs generated by SceneGraphGen are diverse and follow the semantic patterns of real-world scenes. Additionally, we demonstrate the application of the generated graphs in image synthesis, anomaly detection and scene graph completion.
The scene graph generation (SGG) task aims to detect visual relationship triplets, i.e., subject, predicate, object, in an image, providing a structural vision layout for scene understanding. However, current models are stuck in common predicates, e.g., on and at, rather than informative ones, e.g., standing on and looking at, resulting in the loss of precise information and overall performance. If a model only uses stone on road rather than blocking to describe an image, it is easy to misunderstand the scene. We argue that this phenomenon is caused by two key imbalances between informative predicates and common ones, i.e., semantic space level imbalance and training sample level imbalance. To tackle this problem, we propose BA-SGG, a simple yet effective SGG framework based on balance adjustment but not the conventional distribution fitting. It integrates two components: Semantic Adjustment (SA) and Balanced Predicate Learning (BPL), respectively for adjusting these imbalances. Benefited from the model-agnostic process, our method is easily applied to the state-of-the-art SGG models and significantly improves the SGG performance. Our method achieves 14.3%, 8.0%, and 6.1% higher Mean Recall (mR) than that of the Transformer model at three scene graph generation sub-tasks on Visual Genome, respectively. Codes are publicly available.
There is a surge of interest in image scene graph generation (object, attribute and relationship detection) due to the need of building fine-grained image understanding models that go beyond object detection. Due to the lack of a good benchmark, the reported results of different scene graph generation models are not directly comparable, impeding the research progress. We have developed a much-needed scene graph generation benchmark based on the maskrcnn-benchmark and several popular models. This paper presents main features of our benchmark and a comprehensive ablation study of scene graph generation models using the Visual Genome and OpenImages Visual relationship detection datasets. Our codebase is made publicly available at https://github.com/microsoft/scene_graph_benchmark.
We propose an efficient and interpretable scene graph generator. We consider three types of features: visual, spatial and semantic, and we use a late fusion strategy such that each features contribution can be explicitly investigated. We study the key factors about these features that have the most impact on the performance, and also visualize the learned visual features for relationships and investigate the efficacy of our model. We won the champion of the OpenImages Visual Relationship Detection Challenge on Kaggle, where we outperform the 2nd place by 5% (20% relatively). We believe an accurate scene graph generator is a fundamental stepping stone for higher-level vision-language tasks such as image captioning and visual QA, since it provides a semantic, structured comprehension of an image that is beyond pixels and objects.
Todays scene graph generation (SGG) task is still far from practical, mainly due to the severe training bias, e.g., collapsing diverse human walk on / sit on / lay on beach into human on beach. Given such SGG, the down-stream tasks such as VQA can hardly infer better scene structures than merely a bag of objects. However, debiasing in SGG is not trivial because traditional debiasing methods cannot distinguish between the good and bad bias, e.g., good context prior (e.g., person read book rather than eat) and bad long-tailed bias (e.g., near dominating behind / in front of). In this paper, we present a novel SGG framework based on causal inference but not the conventional likelihood. We first build a causal graph for SGG, and perform traditional biased training with the graph. Then, we propose to draw the counterfactual causality from the trained graph to infer the effect from the bad bias, which should be removed. In particular, we use Total Direct Effect (TDE) as the proposed final predicate score for unbiased SGG. Note that our framework is agnostic to any SGG model and thus can be widely applied in the community who seeks unbiased predictions. By using the proposed Scene Graph Diagnosis toolkit on the SGG benchmark Visual Genome and several prevailing models, we observed significant improvements over the previous state-of-the-art methods.