No Arabic abstract
We study the problem of alleviating the instability issue in the GAN training procedure via new architecture design. The discrepancy between the minimax and maximin objective values could serve as a proxy for the difficulties that the alternating gradient descent encounters in the optimization of GANs. In this work, we give new results on the benefits of multi-generator architecture of GANs. We show that the minimax gap shrinks to $epsilon$ as the number of generators increases with rate $widetilde{O}(1/epsilon)$. This improves over the best-known result of $widetilde{O}(1/epsilon^2)$. At the core of our techniques is a novel application of Shapley-Folkman lemma to the generic minimax problem, where in the literature the technique was only known to work when the objective function is restricted to the Lagrangian function of a constraint optimization problem. Our proposed Stackelberg GAN performs well experimentally in both synthetic and real-world datasets, improving Frechet Inception Distance by $14.61%$ over the previous multi-generator GANs on the benchmark datasets.
For many evaluation metrics commonly used as benchmarks for unconditional image generation, trivially memorizing the training set attains a better score than models which are considered state-of-the-art; we consider this problematic. We clarify a necessary condition for an evaluation metric not to behave this way: estimating the function must require a large sample from the model. In search of such a metric, we turn to neural network divergences (NNDs), which are defined in terms of a neural network trained to distinguish between distributions. The resulting benchmarks cannot be won by training set memorization, while still being perceptually correlated and computable only from samples. We survey past work on using NNDs for evaluation and implement an example black-box metric based on these ideas. Through experimental validation we show that it can effectively measure diversity, sample quality, and generalization.
We consider the problem of factorizing a structured 3-way tensor into its constituent Canonical Polyadic (CP) factors. This decomposition, which can be viewed as a generalization of singular value decomposition (SVD) for tensors, reveals how the tensor dimensions (features) interact with each other. However, since the factors are a priori unknown, the corresponding optimization problems are inherently non-convex. The existing guaranteed algorithms which handle this non-convexity incur an irreducible error (bias), and only apply to cases where all factors have the same structure. To this end, we develop a provable algorithm for online structured tensor factorization, wherein one of the factors obeys some incoherence conditions, and the others are sparse. Specifically we show that, under some relatively mild conditions on initialization, rank, and sparsity, our algorithm recovers the factors exactly (up to scaling and permutation) at a linear rate. Complementary to our theoretical results, our synthetic and real-world data evaluations showcase superior performance compared to related techniques. Moreover, its scalability and ability to learn on-the-fly makes it suitable for real-world tasks.
Since its inception, the modus operandi of multi-task learning (MTL) has been to minimize the task-wise mean of the empirical risks. We introduce a generalized loss-compositional paradigm for MTL that includes a spectrum of formulations as a subfamily. One endpoint of this spectrum is minimax MTL: a new MTL formulation that minimizes the maximum of the tasks empirical risks. Via a certain relaxation of minimax MTL, we obtain a continuum of MTL formulations spanning minimax MTL and classical MTL. The full paradigm itself is loss-compositional, operating on the vector of empirical risks. It incorporates minimax MTL, its relaxations, and many new MTL formulations as special cases. We show theoretically that minimax MTL tends to avoid worst case outcomes on newly drawn test tasks in the learning to learn (LTL) test setting. The results of several MTL formulations on synthetic and real problems in the MTL and LTL test settings are encouraging.
Deep neural networks enjoy a powerful representation and have proven effective in a number of applications. However, recent advances show that deep neural networks are vulnerable to adversarial attacks incurred by the so-called adversarial examples. Although the adversarial example is only slightly different from the input sample, the neural network classifies it as the wrong class. In order to alleviate this problem, we propose the Deep Minimax Probability Machine (DeepMPM), which applies MPM to deep neural networks in an end-to-end fashion. In a worst-case scenario, MPM tries to minimize an upper bound of misclassification probabilities, considering the global information (i.e., mean and covariance information of each class). DeepMPM can be more robust since it learns the worst-case bound on the probability of misclassification of future data. Experiments on two real-world datasets can achieve comparable classification performance with CNN, while can be more robust on adversarial attacks.
A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural networks, and because it trains on large datasets. A GAN is generally trained on a single server. In this paper, we address the problem of distributing GANs so that they are able to train over datasets that are spread on multiple workers. MD-GAN is exposed as the first solution for this problem: we propose a novel learning procedure for GANs so that they fit this distributed setup. We then compare the performance of MD-GAN to an adapted version of Federated Learning to GANs, using the MNIST and CIFAR10 datasets. MD-GAN exhibits a reduction by a factor of two of the learning complexity on each worker node, while providing better performances than federated learning on both datasets. We finally discuss the practical implications of distributing GANs.