No Arabic abstract
We explore the isothermal total density profiles of early-type galaxies (ETGs) in the IllustrisTNG simulation. For the selected 559 ETGs at $z = 0$ with stellar mass $10^{10.7}mathrm{M}_{odot} leqslant M_{ast} leqslant 10^{11.9}mathrm{M}_{odot}$, the total power-law slope has a mean of $langlegamma^{prime}rangle = 2.011 pm 0.007$ and a scatter of $sigma_{gamma^{prime}} = 0.171$ over the radial range 0.4 to 4 times the stellar half mass radius. Several correlations between $gamma^{prime}$ and galactic properties including stellar mass, effective radius, stellar surface density, central velocity dispersion, central dark matter fraction and in-situ-formed stellar mass ratio are compared to observations and other simulations, revealing that IllustrisTNG reproduces many correlation trends, and in particular, $gamma^{prime}$ is almost constant with redshift below $z = 2$. Through analyzing IllustrisTNG model variations we show that black hole kinetic winds are crucial to lowering $gamma^{prime}$ and matching observed galaxy correlations. The effects of stellar winds on $gamma^{prime}$ are subdominant compared to AGN feedback, and differ due to the presence of AGN feedback from previous works. The density profiles of the ETG dark matter halos are well-described by steeper-than-NFW profiles, and they are steeper in the full physics (FP) run than their counterparts in the dark matter only (DMO) run. Their inner density slopes anti-correlates (remain constant) with the halo mass in the FP (DMO) run, and anti-correlates with the halo concentration parameter $c_{200}$ in both types of runs. The dark matter halos of low-mass ETGs are contracted whereas high-mass ETGs are expanded, suggesting that variations in the total density profile occur through the different halo responses to baryons.
We study the evolutionary trend of the total density profile of early-type galaxies (ETGs) in IllustrisTNG. To this end, we trace ETGs from $z=0$ to $z=4$ and measure the power-law slope $gamma^{prime}$ of the total density profile for their main progenitors. We find that their $gamma^{prime}$ steepen on average during $zsim4-2$, then becoming shallower until $z=1$, after which they remain almost constant, aside from a residual trend of becoming shallower towards $z=0$. We also compare to a statistical sample of ETGs at different redshifts, selected based on their luminosity profiles and stellar masses. Due to different selection effects, the average slopes of the statistical samples follow a modified evolutionary trend. They monotonically decrease since $z=3$, and after $zapprox 1$, they remain nearly invariant with a mild increase towards $z=0$. These evolutionary trends are mass-dependent for both samples, with low-mass galaxies having in general steeper slopes than their more massive counterparts. Galaxies that transitioned to ETGs more recently have steeper mean slopes as they tend to be smaller and more compact at any given redshift. By analyzing the impact of mergers and AGN feedback on the progenitors evolution, we conjecture a multi-phase path leading to isothermality in ETGs: dissipation associated with rapid wet mergers tends to steepen $gamma^{prime}$ from $z=4$ to $z=2$, whereas subsequent AGN feedback (especially in the kinetic mode) makes $gamma^{prime}$ shallower again from $z=2$ to $z=1$. Afterwards, passive evolution from $z=1$ to $z=0$, mainly through gas-poor mergers, mildly decreases $gamma^{prime}$ and maintains the overall mass distribution close to isothermal.
We have analyzed the parallelism between the properties of galaxy clusters and early-type galaxies (ETGs) by looking at the similarity between their light profiles. We find that the equivalent luminosity profiles of all these systems in the vfilt band, once normalized to the effective radius re and shifted in surface brightness, can be fitted by the Sersics law Sers and superposed with a small scatter ($le0.3$ mag). By grouping objects in different classes of luminosity, the average profile of each class slightly deviates from the other only in the inner and outer regions (outside $0.1leq r/R_eleq 3$), but the range of values of $n$ remains ample for the members of each class, indicating that objects with similar luminosity have quite different shapes. The Illustris simulation reproduces quite well the luminosity profiles of ETGs, with the exception of in the inner and outer regions where feedback from supernovae and active galactic nuclei, wet and dry mergers, are at work. The total mass and luminosity of galaxy clusters as well as their light profiles are not well reproduced. By exploiting simulations we have followed the variation of the effective half-light and half-mass radius of ETGs up to $z=0.8$, noting that progenitors are not necessarily smaller in size than current objects. We have also analyzed the projected dark+baryonic and dark-only mass profiles discovering that after a normalization to the half-mass radius, they can be well superposed and fitted by the Sersics law.
The well-established correlations between the mass of a galaxy and the properties of its stars are considered evidence for mass driving the evolution of the stellar population. However, for early-type galaxies (ETGs), we find that $g-i$ color and stellar metallicity [Z/H] correlate more strongly with gravitational potential $Phi$ than with mass $M$, whereas stellar population age correlates best with surface density $Sigma$. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the SAMI Galaxy Survey, compared to correlations with mass, the color--$Phi$, [Z/H]--$Phi$, and age--$Sigma$ relations show both smaller scatter and less residual trend with galaxy size. For the star formation duration proxy [$alpha$/Fe], we find comparable results for trends with $Phi$ and $Sigma$, with both being significantly stronger than the [$alpha$/Fe]-$M$ relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color--$Phi$ diagram is a more precise tool for determining the developmental stage of the stellar population than the conventional color--mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [$alpha$/Fe] relations with $Sigma$: (a) the age--$Sigma$ and [$alpha$/Fe]--$Sigma$ correlations arise as results of compactness driven quenching mechanisms; and/or (b) as fossil records of the $Sigma_{SFR}proptoSigma_{gas}$ relation in their disk-dominated progenitors.
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ~ 10 h/Mpc by 20%. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with SDSS at its mean redshift z ~ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range 10^9-10^10 Msun/h^2. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy auto-correlation function depends strongly on stellar mass and redshift. Its power-law slope gamma is nearly invariant with stellar mass, but declines from gamma ~ 1.8 at redshift z=0 to gamma ~ 1.6 at redshift z ~ 1, beyond which the slope steepens again. We detect significant scale-dependencies in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ~5%.
The hot ISM in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. The structural features of the hot gas identified by Chandra observations point to key evolutionary mechanisms, (e.g., AGN and stellar feedback, merging history). In our Chandra Galaxy Atlas (CGA) project, taking full advantage of the Chandra capabilities, we systematically analyzed the archival Chandra data of 70 ETGs and produced uniform data products for the hot gas properties. The primary data products are spatially resolved 2D spectral maps of the hot gas from individual galaxies. We emphasize that new features can be identified in the spectral maps which are not readily visible in the surface brightness maps. The high-level images can be viewed at the dedicated CGA website, and the CGA data products can be downloaded to compare with data at other wavelengths and to perform further analyses. Utilizing our data products, we address a few focused science topics.