Do you want to publish a course? Click here

Shubnikov-de Haas and de Haas-van Alphen oscillations in topological semimetal CaAl4

229   0   0.0 ( 0 )
 Added by Sheng Xu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the magneto-transport properties of CaAl$_4$ single crystals with $C2/m$ structure at low temperature. CaAl$_4$ exhibits large unsaturated magnetoresistance $sim$3000$%$ at 2.5 K and 14 T. The nonlinear Hall resistivity is observed, which indicates the multi-band feature. The first-principles calculations show the electron-hole compensation and the complex Fermi surface in CaAl$_4$, to which the two-band model with over-simplified carrier mobility cant completely apply. Evident quantum oscillations have been observed with B//c and B//ab configurations, from which the nontrivial Berry phase is extracted by the multi-band Lifshitz-Kosevich formula fitting. An electron-type quasi-2D Fermi surface is found by the angle-dependent Shubnikov-de Haas oscillations, de Haas-van Alphen oscillations and the first-principles calculations. The calculations also elucidate that CaAl$_4$ owns a Dirac nodal line type band structure around the $Gamma$ point in the $Z$-$Gamma$-$L$ plane, which is protected by the mirror symmetry as well as the space inversion and time reversal symmetries. Once the spin-orbit coupling is included, the crossed nodal line opens a negligible gap (less than 3 meV). The open-orbit topology is also found in the electron-type Fermi surfaces, which is believed to help enhance the magnetoresistance observed.



rate research

Read More

220 - Kejie Fang , Shanhui Fan 2013
Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effect magnetic field, the trajectories of the light beam at a given frequency have the same shape as the constant energy contour for the photonic band structure of the lattice in the absence of the effective magnetic field.
We present the systematic de Haas-van Alphen (dHvA) quantum oscillations studies on the recently discovered topological Dirac semimetal pyrite PtBi2 single crystals. Remarkable dHvA oscillations were observed at field as low as 1.5 T. From the analyses of dHvA oscillations, we have extracted high quantum mobility, light effective mass and phase shift factor for Dirac fermions in pyrite PtBi2. From the angular dependence of dHvA oscillations, we have mapped out the topology of the Fermi surface and identified additional oscillation frequencies which were not probed by SdH oscillations.
We report measurements of Shubnikov-de Haas (SdH) oscillations in single crystals of BiTeCl at magnetic fields up to 31 T and at temperatures as low as 0.4 K. Two oscillation frequencies were resolved at the lowest temperatures, $F_{1}=65 pm 4$ Tesla and $F_{2}=156 pm 5$ Tesla. We also measured the infrared optical reflectance $left(cal R(omega)right)$ and Hall effect; we propose that the two frequencies correspond respectively to the inner and outer Fermi sheets of the Rashba spin-split bulk conduction band. The bulk carrier concentration was $n_{e}approx1times10^{19}$ cm$^{-3}$ and the effective masses $m_{1}^{*}=0.20 m_{0}$ for the inner and $m_{2}^{*}=0.27 m_{0}$ for the outer sheet. Surprisingly, despite its low effective mass, we found that the amplitude of $F_{2}$ is very rapidly suppressed with increasing temperature, being almost undetectable above $Tapprox4$ K.
We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa$_2$Cu$_4$O$_8$ (Y124). For field aligned along the c-axis, the frequency of the oscillations is $660pm 30$ T, which corresponds to $sim 2.4$ % of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be $2.7pm0.3$ times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa$_2$Cu$_3$O$_{6.5}$ (Y123-II). We show that although small Fermi surface pockets may be expected from band structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.
We perform the quantum magnetotransport measurements and first-principles calculations on high quality single crystals of SmAlSi, a new topological Weyl semimetal candidate. At low temperatures, SmAlSi exhibits large non-saturated magnetoresistance (MR)~5200% (at 2 K, 48 T) and prominent Shubnikov-de Haas (SdH) oscillations, where MRs follow the power-law field dependence with exponent 1.52 at low fields ({mu}0H < 15 T) and linear behavior 1 under high fields ({mu}0H > 18 T). The analysis of angle dependent SdH oscillations reveal two fundamental frequencies originated from the Fermi surface (FS) pockets with non-trivial {pi} Berry phases, small cyclotron mass and electron-hole compensation with high mobility at 2 K. In combination with the calculated nontrivial electronic band structure, SmAlSi is proposed to be a paradigm for understanding the Weyl fermions in the topological materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا