Do you want to publish a course? Click here

Trail-Mediated Self-Interaction

129   0   0.0 ( 0 )
 Added by Wolf Till Kranz
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A number of microorganisms leave persistent trails while moving along surfaces. For single-cell organisms, the trail-mediated self-interaction will influence its dynamics. It has been discussed recently [Kranz textit{et al.} Phys. Rev. Lett. textbf{117}, 8101 (2016)] that the self-interaction may localize the organism above a critical coupling $chi_c$ to the trail. Here we will derive a generalized active particle model capturing the key features of the self-interaction and analyze its behavior for smaller couplings $chi < chi_c$. We find that fluctuations in propulsion speed shift the localization transition to stronger couplings.



rate research

Read More

Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body (FB) formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The phase separation can be understood in terms of cell density and a dimensionless Peclet number that captures cell motility through speed and reversal frequency. Our work suggests that M. xanthus take advantage of a self-driven non-equilibrium phase transition that can be controlled at the single cell level.
Like ants, some microorganisms are known to leave trails on surfaces to communicate. We explore how trail-mediated self-interaction could affect the behavior of individual microorganisms when diffusive spreading of the trail is negligible on the timescale of the microorganism using a simple phenomenological model for an actively moving particle and a finite-width trail. The effective dynamics of each microorganism takes on the form of a stochastic integral equation with the trail interaction appearing in the form of short-term memory. For moderate coupling strength below an emergent critical value, the dynamics exhibits effective diffusion in both orientation and position after a phase of superdiffusive reorientation. We report experimental verification of a seemingly counterintuitive perpendicular alignment mechanism that emerges from the model.
Interactions mediated by the cell membrane between inclusions, such as membrane proteins or antimicrobial peptides, play important roles in their biological activity. They also constitute a fascinating challenge for physicists, since they test the boundaries of our understanding of self-assembled lipid membranes, which are remarkable examples of two-dimensional complex fluids. Inclusions can couple to various degrees of freedom of the membrane, resulting in different types of interactions. In this chapter, we review the membrane-mediated interactions that arise from direct constraints imposed by inclusions on the shape of the membrane. These effects are generic and do not depend on specific chemical interactions. Hence, they can be studied using coarse-grained soft matter descriptions. We deal with long-range membrane-mediated interactions due to the constraints imposed by inclusions on membrane curvature and on its fluctuations. We also discuss the shorter-range interactions that arise from the constraints on membrane thickness imposed by inclusions presenting a hydrophobic mismatch with the membrane.
The microaerophilic magnetotactic bacterium Magnetospirillum gryphiswaldense swims along magnetic field lines using a single flagellum at each cell pole. It is believed that this magnetotactic behavior enables cells to seek optimal oxygen concentration with maximal efficiency. We analyse the trajectories of swimming M. gryphiswaldense cells in external magnetic fields larger than the earths field, and show that each cell can switch very rapidly (in < 0.2 s) between a fast and a slow swimming mode. Close to a glass surface, a variety of trajectories was observed, from straight swimming that systematically deviates from field lines to various helices. A model in which fast (slow) swimming is solely due to the rotation of the trailing (leading) flagellum can account for these observations. We determined the magnetic moment of this bacterium using a new method, and obtained a value of (2.0 $pm$ 0.6) $times$ $10^{-16}$ Am$^2$. This value is found to be consistent with parameters emerging from quantitative fitting of trajectories to our model.
We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by non-equilibrium cluster formation is detected for a critical cell packing fraction around 17%. This transition is characterized by a scale-free power-law cluster size distribution, with an exponent $0.88pm0.07$, and the appearance of giant number fluctuations. Our findings are in quantitative agreement with simulations of self-propelled rods. This suggests that the interplay of self-propulsion of bacteria and the rod-shape of bacteria is sufficient to induce collective motion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا