No Arabic abstract
$Fe_3O_4$ is a mixed-valence strongly correlated transition metal oxide which displays the intriguing metal to insulator Verwey transition. Here we investigate the electronic and magnetic structure of $Fe_3O_4$ by a unique combination of high-resolution Fe 2p3d resonant inelastic scattering magnetic circular (RIXS-MCD) and magnetic linear (RIXS-MLD) dichroism. We show that by coupling the site selectivity of RIXS with the magnetic selectivity imposed by the incident polarization handedness, we can unambiguously identify spin-flip excitations and quantify the exchange interaction of the different sublattices. Furthermore, our RIXS-MLD measurements show spin-orbital excitations that exhibit strong polarization and magnetic field dependence. Guided by theoretical simulations, we reveal that the angular dependence arises from a strong interplay between trigonal crystal-field, magnetic exchange and spin-orbit interaction at the nominal $Fe^{2+}$ sites. Our results highlight the capabilities of RIXS magnetic dichroism studies to investigate the ground state of complex systems where in-equivalent sites and bonds are simultaneously present.
We investigate the electronic structure of the highly anisotropic $beta$ phase of metallic plutonium, within the combination of density functional theory (DFT) and dynamical mean field theory (DMFT). Its crystal structure gives rise to site and orbital selective electronic correlations, with coherent Pu-5$f_{5/2}$ states and very incoherent Pu-5$f_{7/2}$ states. The Hunds coupling is essential for determining the level of correlations of electrons in Pu-5$f$ states, and for the quasiparticle multiplets features in the Pu-5$f$ spectral function.
By means of neutron scattering we have determined new branches of magnetic excitations in orbitally active CoO (TN=290 K) up to 15 THz and for temperatures from 6 K to 450 K. Data were taken in the (111) direction in six single-crystal zones. From the dependence on temperature and Q we have identified several branches of magnetic excitation. We describe a model for the coupled orbital and spin states of Co2+ subject to a crystal field and tetragonal distortion.
Magnetic and phonon excitations in the antiferromagnet CoO with an unquenched orbital angular momentum are studied by neutron scattering. Results of energy scans in several Brillouin zones in the (HHL) plane for energy transfers up to 16 THz are presented. The measurements were performed in the antiferromagnetic ordered state at 6 K (well below TN~290 K) as well as in the paramagnetic state at 450 K. Several magnetic excitation modes are identified from the dependence of their intensity on wavevector and temperature. Within a Hunds rule model the excitations correspond to fluctuations of coupled orbital and spin degrees of freedom whose bandwidth is controlled by interionic superexchange. The different <111> ordering domains give rise to several magnetic peaks at each wavevector transfer.
We have used high-resolution resonant inelastic x-ray scattering (RIXS) to study a thin film of NdNiO$_3$, a compound whose unusual spin- and bond-ordered electronic ground state has been of long-standing interest. Below the magnetic ordering temperature, we observe well-defined collective magnon excitations along different high-symmetry directions in momentum space. The magnetic spectra depend strongly on the incident photon energy, which we attribute to RIXS coupling to different local electronic configurations of the expanded and compressed NiO$_6$ octahedra in the bond-ordered state. Both the noncollinear magnetic ground state and the observed site-dependent magnon excitations are well described by a model that assumes strong competition between the antiferromagnetic superexchange and ferromagnetic double-exchange interactions. Our study provides direct insight into the magnetic dynamics and exchange interactions of the rare-earth nickelates, and demonstrates that RIXS can serve as a site-selective probe of magnetism in these and other materials.
We carried out temperature-dependent (20 - 550 K) measurements of resonant inelastic X-ray scattering on LaCoO$_3$ to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantized the renormalized crystal-field excitation energies and spin-state populations. We show that the screening of the on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO$_3$. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.