Do you want to publish a course? Click here

Detecting Radio-AGN signatures in Red geysers

86   0   0.0 ( 0 )
 Added by Namrata Roy
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new class of quiescent galaxies harboring possible AGN-driven winds has been discovered using spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA survey. These galaxies, termed red geysers, constitute $5-10%$ of the local quiescent population and are characterized by narrow bisymmetric patterns in ionized gas emission features. Cheung et al. argued that these galaxies host large-scale AGN-driven winds that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample with similar stellar mass, redshift, rest frame $NUV-r$ color, axis ratio and presence of ionized gas. We have used the 1.4 GHz radio continuum data from VLA FIRST survey to stack the radio flux from the red geyser and control samples. In addition to a 3 times higher FIRST detection rate, we find that red geysers have a 5$sigma$ higher level of average radio flux than control galaxies. After restricting to rest-frame $NUV-r$ color $>$ 5 and checking mid-IR WISE photometry, we rule out star formation contamination and conclude that red geysers are associated with more active AGN. Red geysers and a possibly-related class with disturbed H$alpha$ emission account for 40% of all radio-detected red galaxies with $rm log~(M_star/M_odot) < 11$. Our results support a picture in which episodic AGN activity drives large-scale-relatively weak ionized winds that may provide a feedback mechanism for many early-type galaxies.



rate research

Read More

We present 150 MHz, 1.4 GHz, and 3 GHz radio imaging (LoTSS, FIRST and VLASS) and spatially resolved ionized gas characteristics (SDSS IV-MaNGA) for 140 local ($z<0.1$) early-type red geyser galaxies. These galaxies have low star formation activity (SFR $sim rm 0.01 M_{odot} yr^{-1}$), but show unique extended patterns in spatially-resolved emission line maps that have been interpreted as large-scale ionized winds driven by active galactic nuclei (AGN). In this work we confirm that red geysers host low-luminosity radio sources ($rm L_{1.4GHz} sim 10^{22} W Hz^{-1}$). Out of 42 radio-detected red geysers, 32 are spatially resolved in LoTSS and FIRST, with radio sizes varying between $sim 5-25$ kpc. Three sources have radio sizes exceeding 40 kpc. A majority display a compact radio morphology and are consistent with either low-power compact radio sources (FR0 galaxies) or radio-quiet quasars. They may be powered by small-scale AGN-driven jets which remain unresolved at the current $5$ resolution of radio data. The extended radio sources, not belonging to the compact morphological class, exhibit steeper spectra with a median spectral index of $-0.67$ indicating the dominance of lobed components. The red geysers hosting extended radio sources also have the lowest specific star formation rates, suggesting they either have a greater impact on the surrounding interstellar medium or are found in more massive halos on average. The degree of alignment of the ionized wind cone and the extended radio features are either 0$^{circ}$ or 90$^{circ}$, indicating possible interaction between the interstellar medium and the central radio AGN.
Spatially resolved spectroscopy from SDSS-IV MaNGA survey has revealed a class of quiescent, relatively common early-type galaxies, termed red geysers, that possibly host large scale active galactic nuclei driven winds. Given their potential importance in maintaining low level of star formation at late times, additional evidence confirming that winds are responsible for the red geyser phenomenon is critical. In this work, we present follow-up observations with the Echellette Spectrograph and Imager (ESI) at the Keck telescope of two red geysers (z$<$0.1) using multiple long slit positions to sample different regions of each galaxy. Our ESI data with a spectral resolution (R) $sim$ 8000 improves upon MaNGAs resolution by a factor of four, allowing us to resolve the ionized gas velocity profiles along the putative wind cone with an instrumental resolution of $rm sigma = 16~km~s^{-1}$. The line profiles of H$alpha$ and [NII]$rm lambda 6584$ show asymmetric shapes that depend systematically on location $-$ extended blue wings on the red-shifted side of the galaxy and red wings on the opposite side. We construct a simple wind model and show that our results are consistent with geometric projections through an outflowing conical wind oriented at an angle towards the line of sight. An alternative hypothesis that assigns the asymmetric pattern to beam-smearing of a rotating, ionized gas disk does a poor job matching the line asymmetry profiles. While our study features just two sources, it lends further support to the notion that red geysers are the result of galaxy-scale winds.
We study cool neutral gas traced by NaD absorption in 140 local ($rm z<0.1)$ early-type ``red geyser galaxies. These galaxies show unique signatures in spatially-resolved strong-line emission maps that have been interpreted as large-scale active galactic nuclei driven ionized winds. To investigate the possible fuel source for these winds, we examine the abundance and kinematics of cool gas ($rm T sim 100-1000 K$) inferred from Na I D absorption in red geysers and matched control samples drawn from SDSS-IV MaNGA. We find that red geysers host greater amounts of NaD-associated material. Substantial cool gas components are detected in more than $rm 50 %$ of red geysers (compared to 25% of the control sample) going up to 78$%$ for radio-detected red geysers. Our key result is that cool gas in red geysers is predominantly infalling. Among our 30 radio-detected red geysers, 86$%$ show receding NaD absorption velocities (with respect to the systemic velocity) between $rm 40 - 50~km~s^{-1}$. We verify this result by stacking NaD profiles across each sample which confirms the presence of infalling NaD velocities within red geysers ( $simrm 40~km~s^{-1}$) with no velocity offsets detected in the control samples. Interpreting our observations as signatures of inflowing cool neutral clouds, we derive an approximate mass inflow rate of $rm dot{M}_{in} sim 0.1 M_{odot} yr^{-1}$, similar to that expected from minor merging and internal recycling. Some red geysers show much higher rates ($rm dot{M}_{in} sim 5 M_{odot} yr^{-1}$) that may indicate an ongoing accretion event.
We detect and study the properties of faint radio AGN in Luminous Red Galaxies (LRGs). The LRG sample comprises 760,000 objects from a catalog of LRG photometric redshifts constructed from the Sloan Digital Sky Survey (SDSS) imaging data, and 65,000 LRGs from the SDSS spectroscopic sample. These galaxies have typical 1.4 GHz flux densities in the 10s-100s of microJy, with the contribution from a low-luminosity AGN dominating any contribution from star formation. To probe the radio properties of such faint objects, we employ a stacking technique whereby FIRST survey image cutouts at each optical LRG position are sorted by the parameter of interest and median-combined within bins. We find that median radio luminosity scales with optical luminosity (L_opt) as L_1.4 GHz ~ L_opt^(beta), where beta appears to decrease from beta ~ 1 at z = 0.4 to beta ~ 0 at z = 0.7, a result which could be indicative of AGN cosmic downsizing. We also find that the overall LRG population, which is dominated by low-luminosity AGN, experiences significant cosmic evolution between z = 0.2 and z = 0.7. This implies a considerable increase in total AGN heating for these massive ellipticals with redshift. By matching against the FIRST catalog, we investigate the incidence and properties of LRGs associated with double-lobed (FR I/II) radio galaxies. (Abridged)
We have recently used the Faint Images of the Radio Sky at Twenty-centimeters (FIRST) survey to show that red quasars have fundamentally different radio properties to typical blue quasars: a significant (factor $sim3$) enhancement in the radio-detection fraction, which arises from systems around the radio-quiet threshold with compact ($<5$) radio morphologies. To gain greater insight into these physical differences, here we use the DR14 Sloan Digital Sky Survey (SDSS) and more sensitive, higher resolution radio data from the Very Large Array (VLA) Stripe 82 (S82) and VLA-COSMOS 3 GHz (C3GHz) surveys. With the S82 data, we perform morphological analyses at a resolution and depth three times that of the FIRST radio survey, and confirm an enhancement in radio-faint and compact red quasars over typical quasars; we now also find tentative evidence for an enhancement in red quasars with slightly extended radio structures ($16-43$ kpc at $z=1.5$). These analyses are complemented by C3GHz, which is deep enough to detect radio emission from star-formation processes. From our data we find that the radio enhancement from red quasars is due to AGN activity on compact scales ($< 43$ kpc) for radio-intermediate-radio-quiet sources ($-5<R<-3.4$, where $R=L_{1.4GHz}/L_{6 mu m}$), which decreases at $R<-5$ as the radio emission from star-formation starts to dilute the AGN component. Overall our results argue against a simple orientation scenario and are consistent with red quasars representing a younger, earlier phase in the overall evolution of quasars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا