Do you want to publish a course? Click here

Tetradic motif profiles of horizontal visibility graphs

46   0   0.0 ( 0 )
 Added by Wen-Jie Xie
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Network motif analysis is a useful tool for the investigation of complex networks. We study the profiles of tetradic motifs in horizontal visibility graphs (HVGs) converted from multifractal binomial measures, fractional Gaussian noises, and heartbeat rates. The profiles of tetradic motifs contains the spatial information (visibility) and temporal information (relative magnitude) among the data points in the corresponding time series. For multifractal binomial measures, the occurrence frequencies of the tetradic motifs are determined, which converge to a constant vector $(2/3,0,8/99,8/33,1/99,0)$. For fractional Gaussian noises, the motif occurrence frequencies are found to depend nonlinearly on the Hurst exponent and the length of time series. These findings suggest the potential ability of tetradic motif profiles in distinguishing different types of time series. Finally, we apply the tetradic motif analysis to heartbeat rates of healthy subjects, congestive heart failure (CHF) subjects, and atrial fibrillation (AF) subjects. Different subjects can be distinguished from the occurrence frequencies of tetradic motifs.



rate research

Read More

Complex network is not only a powerful tool for the analysis of complex system, but also a promising way to analyze time series. The algorithm of horizontal visibility graph (HVG) maps time series into graphs, whose degree distributions are numerically and analytically investigated for certain time series. We derive the degree distributions of HVGs through an iterative construction process of HVGs. The degree distributions of the HVG and the directed HVG for random series are derived to be exponential, which confirms the analytical results from other methods. We also obtained the analytical expressions of degree distributions of HVGs and in-degree and out-degree distributions of directed HVGs transformed from multifractal binomial measures, which agree excellently with numerical simulations.
Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology non-trivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the system. Via Pesin identity, this in turn suggests that these block entropies are converging to the Kolmogorov- Sinai entropy of the map, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x), x in[0,1] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.
We employ the horizontal visibility algorithm to map the velocity and acceleration time series in turbulent flows with different Reynolds numbers, onto complex networks. The universal nature of velocity fluctuations in high Reynolds turbulent Helium flow is found to be inherited in the corresponding network topology. The degree distributions of the acceleration series are shown to have stretched exponential forms with the Reynolds number dependent fitting parameter. Furthermore, for acceleration time series, we find a transitional behavior in terms of the Reynolds number in all network features which is in agreement with recent empirical studies.
218 - Wen-Jie Xie , Wei-Xing Zhou 2010
Nonlinear time series analysis aims at understanding the dynamics of stochastic or chaotic processes. In recent years, quite a few methods have been proposed to transform a single time series to a complex network so that the dynamics of the process can be understood by investigating the topological properties of the network. We study the topological properties of horizontal visibility graphs constructed from fractional Brownian motions with different Hurst index $Hin(0,1)$. Special attention has been paid to the impact of Hurst index on the topological properties. It is found that the clustering coefficient $C$ decreases when $H$ increases. We also found that the mean length $L$ of the shortest paths increases exponentially with $H$ for fixed length $N$ of the original time series. In addition, $L$ increases linearly with respect to $N$ when $H$ is close to 1 and in a logarithmic form when $H$ is close to 0. Although the occurrence of different motifs changes with $H$, the motif rank pattern remains unchanged for different $H$. Adopting the node-covering box-counting method, the horizontal visibility graphs are found to be fractals and the fractal dimension $d_B$ decreases with $H$. Furthermore, the Pearson coefficients of the networks are positive and the degree-degree correlations increase with the degree, which indicate that the horizontal visibility graphs are assortative. With the increase of $H$, the Pearson coefficient decreases first and then increases, in which the turning point is around $H=0.6$. The presence of both fractality and assortativity in the horizontal visibility graphs converted from fractional Brownian motions is different from many cases where fractal networks are usually disassortative.
We study the distributional properties of horizontal visibility graphs associated with random restrictive growth sequences and random set partitions of size $n.$ Our main results are formulas expressing the expected degree of graph nodes in terms of simple explicit functions of a finite collection of Stirling and Bernoulli numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا