No Arabic abstract
Nonlinear time series analysis aims at understanding the dynamics of stochastic or chaotic processes. In recent years, quite a few methods have been proposed to transform a single time series to a complex network so that the dynamics of the process can be understood by investigating the topological properties of the network. We study the topological properties of horizontal visibility graphs constructed from fractional Brownian motions with different Hurst index $Hin(0,1)$. Special attention has been paid to the impact of Hurst index on the topological properties. It is found that the clustering coefficient $C$ decreases when $H$ increases. We also found that the mean length $L$ of the shortest paths increases exponentially with $H$ for fixed length $N$ of the original time series. In addition, $L$ increases linearly with respect to $N$ when $H$ is close to 1 and in a logarithmic form when $H$ is close to 0. Although the occurrence of different motifs changes with $H$, the motif rank pattern remains unchanged for different $H$. Adopting the node-covering box-counting method, the horizontal visibility graphs are found to be fractals and the fractal dimension $d_B$ decreases with $H$. Furthermore, the Pearson coefficients of the networks are positive and the degree-degree correlations increase with the degree, which indicate that the horizontal visibility graphs are assortative. With the increase of $H$, the Pearson coefficient decreases first and then increases, in which the turning point is around $H=0.6$. The presence of both fractality and assortativity in the horizontal visibility graphs converted from fractional Brownian motions is different from many cases where fractal networks are usually disassortative.
In this presentation, we introduce a new method for change point analysis on the Hurst index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The proposed method is a transposition of the FDpV (Filtered Derivative with p-value) method introduced for the detection of change points on the mean in Bertrand et al. (2011) to the case of changes on the Hurst index. The underlying statistics of the FDpV technology is a new statistic estimator for Hurst index, so-called Increment Bernoulli Statistic (IBS). Both FDpV and IBS are methods with linear time and memory complexity, with respect to the size of the series. Thus the resulting method for change point analysis on Hurst index reaches also a linear complexity.
In the present paper, we analyze the fractal structures in magnitude time series for a set of unprecedented sample extracted from the National Earthquake Information Center (NEIC) catalog corresponding to 12 Circum-Pacific subduction zones from Chile to Kermadec. For this end, we used the classical Rescaled Range ($R/S$) analysis for estimating the long-term persistence signature derived from scaling parameter so-called Hurst exponent, $H$. As a result, we measured the referred exponent and obtained all values of $H>0.5$, indicating that a long-term memory effect exists. The main contribution of our paper, we found a possible fractal relationship between $H$ and the $b_{s}(q)$-index which emerges from nonextensive Gutenberg-Richter law as a function of the asperity, i.e., we show that the values of $H$ can be associated with the mechanism which controls the abundance of magnitude and, therefore, the level of activity of earthquakes. Finally, we concluded that dynamics associated with fragment-asperity interactions can be emphasized as a self-affine fractal phenomenon.
Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology non-trivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the system. Via Pesin identity, this in turn suggests that these block entropies are converging to the Kolmogorov- Sinai entropy of the map, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x), x in[0,1] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.
Network motif analysis is a useful tool for the investigation of complex networks. We study the profiles of tetradic motifs in horizontal visibility graphs (HVGs) converted from multifractal binomial measures, fractional Gaussian noises, and heartbeat rates. The profiles of tetradic motifs contains the spatial information (visibility) and temporal information (relative magnitude) among the data points in the corresponding time series. For multifractal binomial measures, the occurrence frequencies of the tetradic motifs are determined, which converge to a constant vector $(2/3,0,8/99,8/33,1/99,0)$. For fractional Gaussian noises, the motif occurrence frequencies are found to depend nonlinearly on the Hurst exponent and the length of time series. These findings suggest the potential ability of tetradic motif profiles in distinguishing different types of time series. Finally, we apply the tetradic motif analysis to heartbeat rates of healthy subjects, congestive heart failure (CHF) subjects, and atrial fibrillation (AF) subjects. Different subjects can be distinguished from the occurrence frequencies of tetradic motifs.
A signal processing method designed for the detection of linear (coherent) behaviors among random fluctuations is presented. It is dedicated to the study of data recorded from nonlinear physical systems. More precisely the method is suited for signals having chaotic variations and sporadically appearing regular linear patterns, possibly impaired by noise. We use time-frequency techniques and the Fractional Fourier transform in order to make it robust and easily implementable. The method is illustrated with an example of application: the analysis of chaotic trajectories of advected passive particles. The signal has a chaotic behavior and encounter Levy flights (straight lines). The method is able to detect and quantify these ballistic transport regions, even in noisy situations.