Do you want to publish a course? Click here

PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

99   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PACs autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control systems tracking error and the controllers consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controllers efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.



rate research

Read More

Indoor localization for autonomous micro aerial vehicles (MAVs) requires specific localization techniques, since the Global Positioning System (GPS) is usually not available. We present an efficient onboard computer vision approach that estimates 2D positions of an MAV in real-time. This global localization system does not suffer from error accumulation over time and uses a $k$-Nearest Neighbors ($k$-NN) algorithm to predict positions based on textons---small characteristic image patches that capture the texture of an environment. A particle filter aggregates the estimates and resolves positional ambiguities. To predict the performance of the approach in a given setting, we developed an evaluation technique that compares environments and identifies critical areas within them. We conducted flight tests to demonstrate the applicability of our approach. The algorithm has a localization accuracy of approximately 0.6 m on a 5 m$times$5 m area at a runtime of 32 ms on board of an MAV. Based on random sampling, its computational effort is scalable to different platforms, trading off speed and accuracy.
Controlling of a flapping flight is one of the recent research topics related to the field of Flapping Wing Micro Air Vehicle (FW MAV). In this work, an adaptive control system for a four-wing FW MAV is proposed, inspired by its advanced features like quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability. Sliding Mode Control (SMC) theory has been used to develop the adaptation laws for the proposed adaptive fuzzy controller. The SMC theory confirms the closed-loop stability of the controller. The controller is utilized to control the altitude of the FW MAV, that can adapt to environmental disturbances by tuning the antecedent and consequent parameters of the fuzzy system.
In this work, we address the estimation, planning, control and mapping problems to allow a small quadrotor to autonomously inspect the interior of hazardous damaged nuclear sites. These algorithms run onboard on a computationally limited CPU. We investigate the effect of varying illumination on the system performance. To the best of our knowledge, this is the first fully autonomous system of this size and scale applied to inspect the interior of a full scale mock-up of a Primary Containment Vessel (PCV). The proposed solution opens up new ways to inspect nuclear reactors and to support nuclear decommissioning, which is well known to be a dangerous, long and tedious process. Experimental results with varying illumination conditions show the ability to navigate a full scale mock-up PCV pedestal and create a map of the environment, while concurrently avoiding obstacles.
Nowadays, the application of fully autonomous system like rotary wing unmanned air vehicles (UAVs) is increasing sharply. Due to the complex nonlinear dynamics, a huge research interest is witnessed in developing learning machine based intelligent, self-organizing evolving controller for these vehicles notably to address the systems dynamic characteristics. In this work, such an evolving controller namely Generic-controller (G-controller) is proposed to control the altitude of a rotary wing UAV namely hexacopter. This controller can work with very minor expert domain knowledge. The evolving architecture of this controller is based on an advanced incremental learning algorithm namely Generic Evolving Neuro-Fuzzy Inference System (GENEFIS). The controller does not require any offline training, since it starts operating from scratch with an empty set of fuzzy rules, and then add or delete rules on demand. The adaptation laws for the consequent parameters are derived from the sliding mode control (SMC) theory. The Lyapunov theory is used to guarantee the stability of the proposed controller. In addition, an auxiliary robustifying control term is implemented to obtain a uniform asymptotic convergence of tracking error to zero. Finally, the G-controllers performance evaluation is observed through the altitude tracking of a UAV namely hexacopter for various trajectories.
Complex aircraft systems are becoming a target for automation. For successful operation, they require both efficient and readable mission execution system. Flight control computer (FCC) units, as well as all important subsystems, are often duplicated. Discrete nature of mission execution systems does not allow small differences in data flow among redundant FCCs which are acceptable for continuous control algorithms. Therefore, mission state consistency has to be specifically maintained. We present a novel mission execution system which includes FCC state synchronization. To achieve this result we developed a new concept of Asynchronous Behavior Tree with Memory and proposed a state synchronization algorithm. The implemented system was tested and proven to work in a real-time simulation of High Altitude Pseudo Satellite (HAPS) mission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا