Do you want to publish a course? Click here

Can Deep Learning Outperform Modern Commercial CT Image Reconstruction Methods?

100   0   0.0 ( 0 )
 Added by Hongming Shan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Commercial iterative reconstruction techniques on modern CT scanners target radiation dose reduction but there are lingering concerns over their impact on image appearance and low contrast detectability. Recently, machine learning, especially deep learning, has been actively investigated for CT. Here we design a novel neural network architecture for low-dose CT (LDCT) and compare it with commercial iterative reconstruction methods used for standard of care CT. While popular neural networks are trained for end-to-end mapping, driven by big data, our novel neural network is intended for end-to-process mapping so that intermediate image targets are obtained with the associated search gradients along which the final image targets are gradually reached. This learned dynamic process allows to include radiologists in the training loop to optimize the LDCT denoising workflow in a task-specific fashion with the denoising depth as a key parameter. Our progressive denoising network was trained with the Mayo LDCT Challenge Dataset, and tested on images of the chest and abdominal regions scanned on the CT scanners made by three leading CT vendors. The best deep learning based reconstructions are systematically compared to the best iterative reconstructions in a double-blinded reader study. It is found that our deep learning approach performs either comparably or favorably in terms of noise suppression and structural fidelity, and runs orders of magnitude faster than the commercial iterative CT reconstruction algorithms.



rate research

Read More

117 - Qiyang Zhang , Dong Liang 2020
Recently, the use of deep learning techniques to reconstruct computed tomography (CT) images has become a hot research topic, including sinogram domain methods, image domain methods and sinogram domain to image domain methods. All these methods have achieved favorable results. In this article, we have studied the important functions of fully connected layers used in the sinogram domain to image domain approach. First, we present a simple domain mapping neural networks. Then, we analyze the role of the fully connected layers of these networks and visually analyze the weights of the fully connected layers. Finally, by visualizing the weights of the fully connected layer, we found that the main role of the fully connected layer is to implement the back projection function in CT reconstruction. This finding has important implications for the use of deep learning techniques to reconstruct computed tomography (CT) images. For example, since fully connected layer weights need to consume huge memory resources, the back-projection function can be implemented by using analytical algorithms to avoid resource occupation, which can be embedded in the entire network.
Recently, deep learning approaches have become the main research frontier for biological image reconstruction problems thanks to their high performance, along with their ultra-fast reconstruction times. However, due to the difficulty of obtaining matched reference data for supervised learning, there has been increasing interest in unsupervised learning approaches that do not need paired reference data. In particular, self-supervised learning and generative models have been successfully used for various biological imaging applications. In this paper, we overview these approaches from a coherent perspective in the context of classical inverse problems, and discuss their applications to biological imaging.
Deep learning algorithms, especially convolutional neural networks, have become a methodology of choice in medical image analysis. However, recent studies in computer vision show that even a small modification of input image intensities may cause a deep learning model to classify the image differently. In medical imaging, the distribution of image intensities is related to applied image reconstruction algorithm. In this paper we investigate the impact of ultrasound image reconstruction method on breast lesion classification with neural transfer learning. Due to high dynamic range raw ultrasonic signals are commonly compressed in order to reconstruct B-mode images. Based on raw data acquired from breast lesions, we reconstruct B-mode images using different compression levels. Next, transfer learning is applied for classification. Differently reconstructed images are employed for training and evaluation. We show that the modification of the reconstruction algorithm leads to decrease of classification performance. As a remedy, we propose a method of data augmentation. We show that the augmentation of the training set with differently reconstructed B-mode images leads to a more robust and efficient classification. Our study suggests that it is important to take into account image reconstruction algorithms implemented in medical scanners during development of computer aided diagnosis systems.
PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited number of detected photons. Recently deep neural networks have been widely and successfully used in computer vision tasks and attracted growing interests in medical imaging. In this work, we trained a deep residual convolutional neural network to improve PET image quality by using the existing inter-patient information. An innovative feature of the proposed method is that we embed the neural network in the iterative reconstruction framework for image representation, rather than using it as a post-processing tool. We formulate the objective function as a constraint optimization problem and solve it using the alternating direction method of multipliers (ADMM) algorithm. Both simulation data and hybrid real data are used to evaluate the proposed method. Quantification results show that our proposed iterative neural network method can outperform the neural network denoising and conventional penalized maximum likelihood methods.
Deep learning has shown great promise for CT image reconstruction, in particular to enable low dose imaging and integrated diagnostics. These merits, however, stand at great odds with the low availability of diverse image data which are needed to train these neural networks. We propose to overcome this bottleneck via a deep reinforcement learning (DRL) approach that is integrated with a style-transfer (ST) methodology, where the DRL generates the anatomical shapes and the ST synthesizes the texture detail. We show that our method bears high promise for generating novel and anatomically accurate high resolution CT images at large and diverse quantities. Our approach is specifically designed to work with even small image datasets which is desirable given the often low amount of image data many researchers have available to them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا