Do you want to publish a course? Click here

BRITE photometry of the massive post-RLOF system HD149404

138   0   0.0 ( 0 )
 Added by Gregor Rauw
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

HD149404 is an evolved non-eclipsing O-star binary that has previously undergone a Roche lobe overflow interaction. Understanding some key properties of the system requires a determination of the orbital inclination and of the dimensions of the components. The BRITE-Heweliusz satellite was used to collect photometric data of HD149404. Additional photometry was retrieved from the SMEI archive. These data were analysed using a suite of period search tools. The orbital part of the lightcurve was modelled with the nightfall binary star code. The Gaia-DR2 parallax of HD149404 was used to provide additional constraints. The periodograms reveal a clear orbital modulation of the lightcurve with a peak-to-peak amplitude near 0.04 mag. The remaining non-orbital part of the variability is consistent with red noise. The lightcurve folded with the orbital period reveals ellipsoidal variations, but no eclipses. The minimum when the secondary star is in inferior conjunction is deeper than the other minimum due to mutual reflection effects between the stars. Combined with the Gaia-DR2 parallaxes, the photometric data indicate an orbital inclination in the range of 23{deg} to 31{deg} and a Roche lobe filling factor of the secondary larger than or equal to 0.96. The luminosity of the primary star is consistent with its present-day mass, whereas the more evolved secondary appears overluminous for its mass. We confirm that the primarys rotation period is about half the orbital period. Both features most probably stem from the past Roche lobe overflow episode.



rate research

Read More

Observations of Beta Lyr in four months of 2018 by three BRITE Constellation satellites (the red-filter BTr and BHr, and the blue-filter BLb) permitted a first, limited look into the light-curve variability in two spectral bands. The variations were found to be well correlated outside the innermost primary minima with the blue variations appearing to have smaller amplitudes than the red; this reduction may reflect their presumed origin in the cooler, outer parts of the accretion disk. This result must be confirmed with more extensive material as the current conclusions are based on observations spanning slightly less than three orbital cycles of the binary. The assumption of an instrumental problem and the applied corrections made to explain the unexpectedly large amplitude of the red-filter light-curve observed with the BTr satellite in 2016 are fully confirmed by the 2018 results.
BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V = 4. The current mission design consists of three pairs of 7 kg nanosats from Austria, Canada and Poland carrying optical telescopes and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats are UNIBRITE, designed and built by University of Toronto Institute for Aerospace Studies - Space Flight Laboratory and its twin, BRITE-Austria, built by the Technical University Graz with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency under contract to the Canadian Space Agency into a low-Earth dusk-dawn polar orbit.
This paper aims to precisely determine the masses and detect pulsation modes in the two massive components of Beta Cen with BRITE-Constellation photometry. In addition, seismic models for the components are considered and the effects of fast rotation are discussed. This is done to test the limitations of seismic modeling for this very difficult case. A simultaneous fit of visual and spectroscopic orbits is used to self-consistently derive the orbital parameters, and subsequently the masses, of the components. The derived masses are equal to 12.02 +/- 0.13 and 10.58 +/- 0.18 M_Sun. The parameters of the wider, A - B system, presently approaching periastron passage, are constrained. Analysis of the combined blue- and red-filter BRITE-Constellation photometric data of the system revealed the presence of 19 periodic terms, of which eight are likely g modes, nine are p modes, and the remaining two are combination terms. It cannot be excluded that one or two low-frequency terms are rotational frequencies. It is possible that both components of Beta Cen are Beta Cep/SPB hybrids. An attempt to use the apparent changes of frequency to distinguish which modes originate in which component did not succeed, but there is potential for using this method when more BRITE data become available. Agena seems to be one of very few rapidly rotating massive objects with rich p- and g-mode spectra, and precisely known masses. It can therefore be used to gain a better understanding of the excitation of pulsations in relatively rapidly rotating stars and their seismic modeling. Finally, this case illustrates the potential of BRITE-Constellation data for the detection of rich-frequency spectra of small-amplitude modes in massive pulsating stars.
Results of an analysis of the BRITE-Constellation photometry of the SB1 system and ellipsoidal variable $pi^5$ Ori (B2,III) are presented. In addition to the orbital light-variation, which can be represented as a five-term Fourier cosine series with the frequencies $f_{rm orb}$, $2f_{rm orb}$, $3f_{rm orb}$, $4f_{rm orb}$ and $6f_{rm orb}$, where $f_{rm orb}$ is the systems orbital frequency, the star shows five low-amplitude but highly-significant sinusoidal variations with frequencies $f_i$ ($i ={}$2,..,5,7) in the range from 0.16 to 0.92~d$^{-1}$. With an accuracy better than 1$sigma$, the latter frequencies obey the following relations: $f_2-f_4 = 2f_{rm orb}$, $f_7 - f_3 = 2f_{rm orb}$, $f_5 = f_3 - f_4 = f_7 - f_2$. We interpret the first two relations as evidence that two high-order $ell = 1, m = 0$ gravity modes are self-excited in the systems tidally distorted primary component. The star is thus an ellipsoidal SPB variable. The last relations arise from the existence of the first-order differential combination term between the two modes. Fundamental parameters, derived from photometric data in the literature and the {em Hipparcos/} parallax, indicate that the primary component is close to the terminal stages of its main sequence (MS) evolution. Extensive Wilson-Devinney modeling leads to the conclusion that best fits of the theoretical to observed light-curves are obtained for the effective temperature and mass consistent with the primarys position in the HR diagram and suggests that the secondary is in an early MS evolutionary stage.
The BRITE mission is a pioneering space project aimed at the long-term photometric monitoring of the brightest stars in the sky by means of a constellation of nano-satellites. Its main advantage is high photometric accuracy and time coverage inaccessible from the ground. The main aim of this paper is the presentation of procedures used to obtain high-precision photometry from a series of images acquired by the BRITE satellites in two modes of observing, stare and chopping. We developed two pipelines corresponding to the two modes of observing. The assessment of the performance of both pipelines is presented. It is based on two comparisons, which use data from six runs of the UniBRITE satellite: (i) comparison of photometry obtained by both pipelines on the same data, which were partly affected by charge transfer inefficiency (CTI), (ii) comparison of real scatter with theoretical expectations. It is shown that for CTI-affected observations, the chopping pipeline provides much better photometry than the other pipeline. For other observations, the results are comparable only for data obtained shortly after switching to chopping mode. Starting from about 2.5 years in orbit, the chopping mode of observing provides significantly better photometry for UniBRITE data than the stare mode. This paper shows that high-precision space photometry with low-cost nano-satellites is achievable. The proposed meth- ods, used to obtain photometry from images affected by high impulsive noise, can be applied to data from other space missions or even to data acquired from ground-based observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا