No Arabic abstract
This paper aims to precisely determine the masses and detect pulsation modes in the two massive components of Beta Cen with BRITE-Constellation photometry. In addition, seismic models for the components are considered and the effects of fast rotation are discussed. This is done to test the limitations of seismic modeling for this very difficult case. A simultaneous fit of visual and spectroscopic orbits is used to self-consistently derive the orbital parameters, and subsequently the masses, of the components. The derived masses are equal to 12.02 +/- 0.13 and 10.58 +/- 0.18 M_Sun. The parameters of the wider, A - B system, presently approaching periastron passage, are constrained. Analysis of the combined blue- and red-filter BRITE-Constellation photometric data of the system revealed the presence of 19 periodic terms, of which eight are likely g modes, nine are p modes, and the remaining two are combination terms. It cannot be excluded that one or two low-frequency terms are rotational frequencies. It is possible that both components of Beta Cen are Beta Cep/SPB hybrids. An attempt to use the apparent changes of frequency to distinguish which modes originate in which component did not succeed, but there is potential for using this method when more BRITE data become available. Agena seems to be one of very few rapidly rotating massive objects with rich p- and g-mode spectra, and precisely known masses. It can therefore be used to gain a better understanding of the excitation of pulsations in relatively rapidly rotating stars and their seismic modeling. Finally, this case illustrates the potential of BRITE-Constellation data for the detection of rich-frequency spectra of small-amplitude modes in massive pulsating stars.
Photometric instabilities of $beta$ Lyr were observed in 2016 by two red-filter BRITE satellites over more than 10 revolutions of the binary, with $sim$100-minute sampling. Analysis of the time series shows that flares or fading events take place typically 3 to 5 times per binary orbit. The amplitudes of the disturbances (relative to the mean light curve, in units of the maximum out-of-eclipse light-flux, f.u.) are characterized by a Gaussian distribution with $sigma=0.0130pm0.0004$ f.u. Most of the disturbances appear to be random, with a tendency to remain for one or a few orbital revolutions, sometimes changing from brightening to fading or the reverse. Phases just preceding the center of the deeper eclipse showed the most scatter while phases around secondary eclipse were the quietest. This implies that the invisible companion is the most likely source of the instabilities. Wavelet transform analysis showed domination of the variability scales at phase intervals $0.05-0.3$ (0.65--4 d), with the shorter (longer) scales dominating in numbers (variability power) in this range. The series can be well described as a stochastic Gaussian process with the signal at short timescales showing a slightly stronger correlation than red noise. The signal de-correlation timescale $tau=(0.068pm0.018)$ in phase or $(0.88pm0.23)$~d appears to follow the same dependence on the accretor mass as that observed for AGN and QSO masses 5--9 orders of magnitude larger than the $beta$~Lyr torus-hidden component.
BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V = 4. The current mission design consists of three pairs of 7 kg nanosats from Austria, Canada and Poland carrying optical telescopes and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats are UNIBRITE, designed and built by University of Toronto Institute for Aerospace Studies - Space Flight Laboratory and its twin, BRITE-Austria, built by the Technical University Graz with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency under contract to the Canadian Space Agency into a low-Earth dusk-dawn polar orbit.
Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive stars, which are important for the chemical enrichment of the universe. It is therefore important to constrain their physical parameters and internal angular momentum distribution to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split oscillations but such results are still quite rare, especially for stars more massive than the Sun. The SPB star HD201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 d. Our results are based on photometric observations made by BRITE - Constellation and the SMEI on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 years of radial velocity measurements. We identify a sequence of 9 rotationally split dipole modes in the photometric time series and establish that HD201433 is in principle a solid-body rotator with a very slow rotation period of 297+/-76 d. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD201433 is also reflected by the statistically significant decrease of the orbital period of about 0.9 s during the last 96 years. Combining the asteroseismic inferences with the spectroscopic measurements and the orbital analysis of the inner binary system, we conclude that tidal interactions between the central SPB star and its inner companion have almost circularised the orbit but not yet aligned all spins of the system and have just begun to synchronise rotation.
Context: The study of stellar structure and evolution depends crucially on accurate stellar parameters. The photometry from space telescopes has provided superb data that allowed asteroseismic characterisation of thousands of stars. However, typical targets of space telescopes are rather faint and complementary measurements are difficult to obtain. On the other hand, the brightest, otherwise well-studied stars, are lacking seismic characterization. Aims: Our goal is to use the granulation and/or oscillation time scales measured from photometric time series of bright red giants (1.6$leq$Vmag$leq$5.3) observed with BRITE to determine stellar surface gravities and masses. Methods: We use probabilistic methods to characterize the granulation and/or oscillation signal in the power density spectra and the autocorrelation function of the BRITE time series. Results: We detect a clear granulation and/or oscillation signal in 23 red giant stars and extract the corresponding time scales from the power density spectra as well as the autocorrelation function of the BRITE time series. To account for the recently discovered non-linearity of the classical seismic scaling relations, we use parameters from a large sample of Kepler stars to re-calibrate the scalings of the high- and low-frequency components of the granulation signal. We develop a method to identify which component is measured if only one granulation component is statistically significant in the data. We then use the new scalings to determine the surface gravity of our sample stars, finding them to be consistent with those determined from the autocorrelation signal of the time series. We further use radius estimates from the literature to determine the stellar masses of our sample stars from the measured surface gravities. We also define a statistical measure for the evolutionary stage of the stars.
$varepsilon$ Lupi A is a binary system consisting of two main sequence early B-type stars Aa and Ab in a short period, moderately eccentric orbit. The close binary pair is the only doubly-magnetic massive binary currently known. Using photometric data from the BRITE-Constellation we identify a modest heartbeat variation. Combining the photometry with radial velocities of both components we determine a full orbital solution including empirical masses and radii. These results are compared with stellar evolution models as well as interferometry and the differences discussed. We also find additional photometric variability at several frequencies, finding it unlikely these frequencies can be caused by tidally excited oscillations. We do, however, determine that these signals are consistent with gravity mode pulsations typical for slowly pulsating B stars. Finally we discuss how the evolution of this system will be affected by magnetism, determining that tidal interactions will still be dominant.