Do you want to publish a course? Click here

Spin Hall effect in 2D metallic delafossite PtCoO$_2$ and vicinity topology

102   0   0.0 ( 0 )
 Added by Sota Kitamura
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The two-dimensional (2D) metal PtCoO$_2$ is renowned for the lowest room temperature resistivity among all oxides, close to that of the top two materials Ag and Cu. In addition, we theoretically predict a strong intrinsic spin Hall effect. This originates from six strongly-tilted Dirac cones that we find in the electronic structure near the Fermi surface, where a gap is opened by large spin-orbit coupling (SOC). This is underpinned by rich topological properties; in particular, the phenomenology of a mirror Chern metal is realized not exactly, but very accurately, on account of an approximate crystalline symmetry. We expect that such vicinity topology to be a feature of relevance well beyond this material. Our Wilson loop analysis indicates further elaborate features such as fragile topology. These findings highlight PtCoO$_2$ as a promising material for spintronic applications as well as a platform to study the interplay of symmetry and topology.



rate research

Read More

We predict spin Hall angles up to 80% for ultrathin noble metal films with substitutional Bi impurities. The colossal spin Hall effect is caused by enhancement of the spin Hall conductivity in reduced sample dimension and a strong reduction of the charge conductivity by resonant impurity scattering. These findings can be exploited to create materials with high efficiency of charge to spin current conversion by strain engineering.
We study the mechanisms of the spin Hall effect (SHE) and anomalous Hall effect (AHE) in 3$d$ ferromagnetic metals (Fe, Co, permalloy (Ni$_{81}$Fe$_{19}$; Py), and Ni) by varying their resistivities and temperature. At low temperatures where the phonon scattering is negligible, the skew scattering coefficients of the SHE and AHE in Py are related to its spin polarization. However, this simple relation breaks down for Py at higher temperatures as well as for the other ferromagnetic metals at any temperature. We find that, in general, the relation between the SHE and AHE is more complex, with the temperature dependence of the SHE being much stronger than that of AHE.
We report an unconventional quantum spin Hall phase in the monolayer T$_text{d}$-WTe$_2$, which exhibits hitherto unknown features in other topological materials. The low-symmetry of the structure induces a canted spin texture in the $yz$ plane, which dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized ($2e^2/h$) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multi-probe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.
We report on the observation of the acoustic spin Hall effect that facilitates lattice motion induced spin current via spin orbit interaction (SOI). Under excitation of surface acoustic wave (SAW), we find a spin current flows orthogonal to the propagation direction of a surface acoustic wave (SAW) in non-magnetic metals. The acoustic spin Hall effect manifests itself in a field-dependent acoustic voltage in non-magnetic metal (NM)/ferromagnetic metal (FM) bilayers. The acoustic voltage takes a maximum when the NM layer thickness is close to its spin diffusion length, vanishes for NM layers with weak SOI and increases linearly with the SAW frequency. To account for these results, we find the spin current must scale with the SOI and the time derivative of the lattice displacement. Such form of spin current can be derived from a Berry electric field associated with time varying Berry curvature and/or an unconventional spin-lattice interaction mediated by SOI. These results, which imply the strong coupling of electron spins with rotating lattices via the SOI, show the potential of lattice dynamics to supply spin current in strong spin orbit metals.
We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists in the interchange between the current flow and its spin polarization directions [Lifshits and Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation and spin swapping are treated on equal footing. We demonstrate that spin Hall effect and spin swapping present very different dependences as a function of the spin-orbit coupling and disorder strengths. As a consequence, we show that spin swapping may even exceed spin Hall effect. Three set-ups are proposed for the experimental observation of the spin swapping effect in metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا