Do you want to publish a course? Click here

APPROX -- Mutual approximations between the Galilean moons. The 2016-2018 observational campaign

99   0   0.0 ( 0 )
 Added by Bruno Morgado Mr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The technique of mutual approximations accurately gives the central instant at the maximum apparent approximation of two moving natural satellites in the sky plane. This can be used in ephemeris fitting to infer the relative positions between satellites with high precision. Only the mutual phenomena -- occultations and eclipses -- may achieve better results. However, mutual phenomena only occur every six years in the case of Jupiter. Mutual approximations do not have this restriction and can be observed at any time along the year as long as the satellites are visible. In this work, we present 104 central instants determined from the observations of 66 mutual approximations between the Galilean moons carried out at different sites in Brazil and France during the period 2016--2018. For 28 events we have at least two independent observations. All telescopes were equipped with a narrow-band filter centred at 889 nm with a width of 15 nm to eliminate the scattered light from Jupiter. The telescope apertures ranged between 25--120 cm. For comparison, the precision of the positions obtained with classical CCD astrometry is about 100 mas, for mutual phenomena it can achieve 10 mas or less and the average internal precision obtained with mutual approximations was 11.3 mas. This new kind of simple, yet accurate observations can significantly improve the orbits and ephemeris of Galilean satellites and thus be very useful for the planning of future space missions aiming at the Jovian system.



rate research

Read More

Typically we can deliver astrometric positions of natural satellites with errors in the 50-150 mas range. Apparent distances from mutual phenomena, have much smaller errors, less than 10 mas. However, this method can only be applied during the equinox of the planets. We developed a method that can provide accurate astrometric data for natural satellites -- the mutual approximations. The method can be applied when any two satellites pass close by each other in the apparent sky plane. The fundamental parameter is the central instant $t_0$ of the passage when the distances reach a minimum. We applied the method for the Galilean moons. All observations were made with a 0.6 m telescope with a narrow-band filter centred at 889 nm with width of 15 nm which attenuated Jupiters scattered light. We obtained central instants for 14 mutual approximations observed in 2014-2015. We determined $t_0$ with an average precision of 3.42 mas (10.43 km). For comparison, we also applied the method for 5 occultations in the 2009 mutual phenomena campaign and for 22 occultations in the 2014-2015 campaign. The comparisons of $t_0$ determined by our method with the results from mutual phenomena show an agreement by less than 1-sigma error in $t_0$, typically less than 10 mas. This new method is particularly suitable for observations by small telescopes.
81 - P. Wurz , D. Lasi , N. Thomas 2017
We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary body of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probes fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe (CDP) for the former Europa-Jupiter System Mission (EJSM) of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.
Tenuous dust clouds of Jupiters Galilean moons Io, Europa, Ganymede and Callisto have been detected with the in-situ dust detector on board the Galileo spacecraft. The majority of the dust particles have been sensed at altitudes below five radii of these lunar-sized satellites. We identify the particles in the dust clouds surrounding the moons by their impact direction, impact velocity, and mass distribution. Average particle sizes are 0.5 to $rm 1 mu m$, just above the detector threshold, indicating a size distribution with decreasing numbers towards bigger particles. Our results imply that the particles have been kicked up by hypervelocity impacts of micrometeoroids onto the satellites surfaces. The measured radial dust density profiles are consistent with predictions by dynamical modeling for satellite ejecta produced by interplanetary impactors (Krivov et al., PSS, 2003, 51, 251--269), assuming yield, mass and velocity distributions of the ejecta from laboratory measurements. The dust clouds of the three outer Galilean moons have very similar properties and are in good agreement with the model predictions for solid ice-silicate surfaces. The dust density in the vicinity of Io, however, is more than an order of magnitude lower than expected from theory. This may be due to a softer, fluffier surface of Io (volcanic deposits) as compared to the other moons. The log-log slope of the dust number density in the clouds vs. distance from the satellite center ranges between --1.6 and --2.8. Appreciable variations of number densities obtained from individual flybys with varying geometry, especially at Callisto, might be indicative of leading-trailing asymmetries of the clouds due to the motion of the moons with respect to the field of impactors.
We present the results of photometric observations of the mutual phenomena in the system of Galilean satellites obtained during 2014-2015. The observations were performed using the 26-inch refractor, Normal Astrograph, ZA-320 telescope of the Pulkovo Observatory (084) and MTM-500 telescope at Pulkovo mountain station at Kislovodsk (C20). We made observations a total of 72 phenomena. We had derived 51 light curves of good and medium quality for 34 events. The RMS of determining the brightness is within a range from 0.02 to 0.19 mag, the average RMS is 0.06 mag. This work was supported by RFBR grant (project 15-02-03025).
Each of the giant planets within the Solar System has large moons but none of these moons have their own moons (which we call ${it submoons}$). By analogy with studies of moons around short-period exoplanets, we investigate the tidal-dynamical stability of submoons. We find that 10 km-scale submoons can only survive around large (1000 km-scale) moons on wide-separation orbits. Tidal dissipation destabilizes the orbits of submoons around moons that are small or too close to their host planet; this is the case for most of the Solar Systems moons. A handful of known moons are, however, capable of hosting long-lived submoons: Saturns moons Titan and Iapetus, Jupiters moon Callisto, and Earths Moon. Based on its inferred mass and orbital separation, the newly-discovered exomoon candidate Kepler-1625b-I can in principle host a large submoon, although its stability depends on a number of unknown parameters. We discuss the possible habitability of submoons and the potential for subsubmoons. The existence, or lack thereof, of submoons, may yield important constraints on satellite formation and evolution in planetary systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا