Do you want to publish a course? Click here

Direct Observation of Topology from Single-photon Dynamics on a Photonic Chip

135   0   0.0 ( 0 )
 Added by Xian-Min Jin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topology manifesting in many branches of physics deepens our understanding on state of matters. Topological photonics has recently become a rapidly growing field since artificial photonic structures can be well designed and constructed to support topological states, especially a promising large-scale implementation of these states using photonic chips. Meanwhile, due to the inapplicability of Hall conductance to photons, it is still an elusive problem to directly measure the integer topological invariants and topological phase transitions for photons. Here, we present a direct observation of topological winding numbers by using bulk-state photon dynamics on a chip. Furthermore, we for the first time experimentally observe the topological phase transition points via single-photon dynamics. The integrated topological structures, direct measurement in the single-photon regime and strong robustness against disorder add the key elements into the toolbox of `quantum topological photonics and may enable topologically protected quantum information processing in large scale.

rate research

Read More

Low-decoherence regime plays a key role in constructing multi-particle quantum systems and has therefore been constantly pursued in order to build quantum simulators and quantum computers in a scalable fashion. Quantum error correction and quantum topological computing have been proved being able to protect quantumness but havent been experimentally realized yet. Recently, topological boundary states are found inherently stable and are capable of protecting physical fields from dissipation and disorder, which inspires the application of such a topological protection on quantum correlation. Here, we present an experimental demonstration of topological protection of two-photon quantum states on a photonic chip. By analyzing the quantum correlation of photons out from the topologically nontrivial boundary state, we obtain a high cross-correlation and a strong violation of Cauchy-Schwarz inequality up to 30 standard deviations. Our results, together with our integrated implementation, provide an alternative way of protecting quantumness, and may inspire many more explorations in quantum topological photonics, a crossover between topological photonics and quantum information.
Percolation, describing critical behaviors of phase transition in a geometrical context, prompts wide investigations in natural and social networks as a fundamental model. The introduction of quantum-intrinsic interference and tunneling brings percolation into quantum regime with more fascinating phenomena and unique features, which, however, hasnt been experimentally explored yet. Here we present an experimental demonstration of quantum transport in hexagonal percolation lattices by successfully mapping such large-scale porous structures into a photonic chip using femtosecond laser direct writing techniques. A quantum percolation threshold of 80% is observed in the prototyped laser-written lattices with up to 1,600 waveguides, which is significantly larger than the classical counterpart of 63%. We also investigate the spatial confinement by localization parameters and exhibit the transition from ballistic to diffusive propagation with the decrease of the occupation probability. Direct observation of quantum percolation may deepen the understanding of the relation among materials, quantum transport, geometric quenching, disorder and localization, and inspire applications for quantum technologies.
Single-photon counters are single-pixel binary devices that click upon the absorption of a photon but obscure its spectral information, whereas resolving the colour of detected photons has been in critical demand for frontier astronomical observation, spectroscopic imaging and wavelength division multiplexed quantum communications. Current implementations of single-photon spectrometers either consist of bulky wavelength-scanning components or have limited detection channels, preventing parallel detection of broadband single photons with high spectral resolutions. Here, we present the first broadband chip-scale single-photon spectrometer covering both visible and infrared wavebands spanning from 600nm to 2000nm. The spectrometer integrates an on-chip dispersive echelle grating with a single-element propagating superconducting nanowire detector of ultraslow-velocity for mapping the dispersed photons with high spatial resolutions. The demonstrated on-chip single-photon spectrometer features small device footprint, high robustness with no moving parts and meanwhile offers more than 200 equivalent wavelength detection channels with further scalability.
120 - J. Belhassen , F. Baboux , Q. Yao 2017
We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation $g^{(2)}_{rm her}(0)=0.10 pm 0.02$ that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information.
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا