Do you want to publish a course? Click here

Convergence of normalized Betti numbers in nonpositive curvature

145   0   0.0 ( 0 )
 Added by Ian Biringer
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the convergence of volume-normalized Betti numbers in Benjamini-Schramm convergent sequences of non-positively curved manifolds with finite volume. In particular, we show that if $X$ is an irreducible symmetric space of noncompact type, $X eq mathbb H^3$, and $(M_n)$ is any Benjamini-Schramm convergent sequence of finite volume $X$-manifolds, then the normalized Betti numbers $b_k(M_n)/vol(M_n)$ converge for all $k$. As a corollary, if $X$ has higher rank and $(M_n)$ is any sequence of distinct, finite volume $X$-manifolds, the normalized Betti numbers of $M_n$ converge to the $L^2$ Betti numbers of $X$. This extends our earlier work with Nikolov, Raimbault and Samet, where we proved the same convergence result for uniformly thick sequences of compact $X$-manifolds.



rate research

Read More

224 - Koji Fujiwara 2021
We exhibit a closed aspherical 5-manifold of nonpositive curvature that fibers over a circle whose fundamental group is hyperbolic relative to abelian subgroups such that the fiber is a closed aspherical 4-manifold whose fundamental group is not hyperbolic relative to abelian subgroups.
116 - Huihong Jiang , Yi-Hu Yang 2019
In a previous paper, we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimension $ge 6$. The purpose of the present paper is to use a different way to exhibit a family of complete $I$-dimensinal ($Ige5$) Riemannian manifolds of positive Ricci curvature, quadratically asymptotically nonnegative sectional curvature, and certain infinite Betti number $b_j$ ($2le jle I-2$).
105 - Kai Tang 2021
Motivated by the recent work of Chu-Lee-Tam on the nefness of canonical line bundle for compact K{a}hler manifolds with nonpositive $k$-Ricci curvature, we consider a natural notion of {em almost nonpositive $k$-Ricci curvature}, which is weaker than the existence of a K{a}hler metric with nonpositive $k$-Ricci curvature. When $k=1$, this is just the {em almost nonpositive holomorphic sectional curvature} introduced by Zhang. We firstly give a lower bound for the existence time of the twisted K{a}hler-Ricci flow when there exists a K{a}hler metric with $k$-Ricci curvature bounded from above by a positive constant. As an application, we prove that a compact K{a}hler manifold of almost nonpositive $k$-Ricci curvature must have nef canonical line bundle.
79 - Weisheng Wu 2021
In this article, we consider a closed rank one $C^infty$ Riemannian manifold $M$ of nonpositive curvature and its universal cover $X$. Let $b_t(x)$ be the Riemannian volume of the ball of radius $t>0$ around $xin X$, and $h$ the topological entropy of the geodesic flow. We obtain the following Margulis-type asymptotic estimates [lim_{tto infty}b_t(x)/frac{e^{ht}}{h}=c(x)] for some continuous function $c: Xto mathbb{R}$. We prove that the Margulis function $c(x)$ is in fact $C^1$. If $M$ is a surface of nonpositive curvature without flat strips, we show that $c(x)$ is constant if and only if $M$ has constant negative curvature.
We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers are topological invariants of figures that can be used to distinguish topological spaces. In the case of the excursion sets of a three-dimensional field there are three possibly non-zero Betti numbers; $beta_0$ is the number of connected regions, $beta_1$ is the number of circular holes, and $beta_2$ is the number of three-dimensional voids. Their sum with alternating signs is the genus of the surface of excursion regions. It is found that each Betti number has a dominant contribution to the genus in a specific threshold range. $beta_0$ dominates the high-threshold part of the genus curve measuring the abundance of high density regions (clusters). $beta_1$ dominates the genus near the median thresholds which measures the topology of negatively curved iso-density surfaces, and $beta_2$ corresponds to the low-threshold part measuring the void abundance. We average the Betti number curves (the Betti numbers as a function of the threshold level) over many realizations of Gaussian fields and find that both the amplitude and shape of the Betti number curves depend on the slope of the power spectrum $n$ in such a way that their shape becomes broader and their amplitude drops less steeply than the genus as $n$ decreases. This behaviour contrasts with the fact that the shape of the genus curve is fixed for all Gaussian fields regardless of the power spectrum. Even though the Gaussian Betti number curves should be calculated for each given power spectrum, we propose to use the Betti numbers for better specification of the topology of large scale structures in the universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا