Do you want to publish a course? Click here

Betti numbers of Gaussian fields

231   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers are topological invariants of figures that can be used to distinguish topological spaces. In the case of the excursion sets of a three-dimensional field there are three possibly non-zero Betti numbers; $beta_0$ is the number of connected regions, $beta_1$ is the number of circular holes, and $beta_2$ is the number of three-dimensional voids. Their sum with alternating signs is the genus of the surface of excursion regions. It is found that each Betti number has a dominant contribution to the genus in a specific threshold range. $beta_0$ dominates the high-threshold part of the genus curve measuring the abundance of high density regions (clusters). $beta_1$ dominates the genus near the median thresholds which measures the topology of negatively curved iso-density surfaces, and $beta_2$ corresponds to the low-threshold part measuring the void abundance. We average the Betti number curves (the Betti numbers as a function of the threshold level) over many realizations of Gaussian fields and find that both the amplitude and shape of the Betti number curves depend on the slope of the power spectrum $n$ in such a way that their shape becomes broader and their amplitude drops less steeply than the genus as $n$ decreases. This behaviour contrasts with the fact that the shape of the genus curve is fixed for all Gaussian fields regardless of the power spectrum. Even though the Gaussian Betti number curves should be calculated for each given power spectrum, we propose to use the Betti numbers for better specification of the topology of large scale structures in the universe.



rate research

Read More

The topology and geometry of random fields - in terms of the Euler characteristic and the Minkowski functionals - has received a lot of attention in the context of the Cosmic Microwave Background (CMB), as the detection of primordial non-Gaussianities would form a valuable clue on the physics of the early Universe. The virtue of both the Euler characteristic and the Minkowski functionals in general, lies in the fact that there exist closed form expressions for their expectation values for Gaussian random fields. However, the Euler characteristic and Minkowski functionals are summarizing characteristics of topology and geometry. Considerably more topological information is contained in the homology of the random field, as it completely describes the creation, merging and disappearance of topological features in superlevel set filtrations. In the present study we extend the topological analysis of the superlevel set filtrations of two-dimensional Gaussian random fields by analysing the statistical properties of the Betti numbers - counting the number of connected components and loops - and the persistence diagrams - describing the creation and mergers of homological features. Using the link between homology and the critical points of a function - as illustrated by the Morse-Smale complex - we derive a one-parameter fitting formula for the expectation value of the Betti numbers and forward this formalism to the persistent diagrams. We, moreover, numerically demonstrate the sensitivity of the Betti numbers and persistence diagrams to the presence of non-Gaussianities.
90 - Irina Makarenko 2017
The interstellar medium (ISM) is a magnetised system in which transonic or supersonic turbulence is driven by supernova explosions. This leads to the production of intermittent, filamentary structures in the ISM gas density, whilst the associated dynamo action also produces intermittent magnetic fields. The traditional theory of random functions, restricted to second-order statistical moments (or power spectra), does not adequately describe such systems. We apply topological data analysis (TDA), sensitive to all statistical moments and independent of the assumption of Gaussian statistics, to the gas density fluctuations in a magnetohydrodynamic (MHD) simulation of the multi-phase ISM. This simulation admits dynamo action, so produces physically realistic magnetic fields. The topology of the gas distribution, with and without magnetic fields, is quantified in terms of Betti numbers and persistence diagrams. Like the more standard correlation analysis, TDA shows that the ISM gas density is sensitive to the presence of magnetic fields. However, TDA gives us important additional information that cannot be obtained from correlation functions. In particular, the Betti numbers per correlation cell are shown to be physically informative. Magnetic fields make the ISM more homogeneous, reducing the abundance of both isolated gas clouds and cavities, with a stronger effect on the cavities. Remarkably, the modification of the gas distribution by magnetic fields is captured by the Betti numbers even in regions more than 300 pc from the midplane, where the magnetic field is weaker and correlation analysis fails to detect any signatures of magnetic effects.
We introduce a new descriptor of the weblike pattern in the distribution of galaxies and matter: the scale dependent Betti numbers which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic used in earlier analyses of cosmological models. The richer information content of Betti numbers goes along with the availability of fast algorithms to compute them. When measured as a function of scale they provide a Betti signature for a point distribution that is a sensitive yet robust discriminator of structure. The signature is highly effective in revealing differences in structure arising in different cosmological models, and is exploited towards distinguishing between different dark energy models and may likewise be used to trace primordial non-Gaussianities. In this study we demonstrate the potential of Betti numbers by studying their behaviour in simulations of cosmologies differing in the nature of their dark energy.
We introduce a multiscale topological description of the Megaparsec weblike cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure, and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different weblike morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of weblike configurations, and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.
We study the expected behavior of the Betti numbers of arrangements of the zeros of random (distributed according to the Kostlan distribution) polynomials in $mathbb{R}mathrm{P}^n$. Using a random spectral sequence, we prove an asymptotically exact estimate on the expected number of connected components in the complement of $s$ such hypersurfaces in $mathbb{R}mathrm{P}^n$. We also investigate the same problem in the case where the hypersurfaces are defined by random quadratic polynomials. In this case, we establish a connection between the Betti numbers of such arrangements with the expected behavior of a certain model of a randomly defined geometric graph. While our general result implies that the average zeroth Betti number of the union of random hypersurface arrangements is bounded from above by a function that grows linearly in the number of polynomials in the arrangement, using the connection with random graphs, we show an upper bound on the expected zeroth Betti number of random quadrics arrangements that is sublinear in the number of polynomials in the arrangement. This bound is a consequence of a general result on the expected number of connected components in our random graph model which could be of independent interest.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا