Do you want to publish a course? Click here

Eigenbasis of the Evolution Operator of 2-Tessellable Quantum Walks

57   0   0.0 ( 0 )
 Added by Etsuo Segawa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Staggered quantum walks on graphs are based on the concept of graph tessellation and generalize some well-known discrete-time quantum walk models. In this work, we address the class of 2-tessellable quantum walks with the goal of obtaining an eigenbasis of the evolution operator. By interpreting the evolution operator as a quantum Markov chain on an underlying multigraph, we define the concept of quantum detailed balance, which helps to obtain the eigenbasis. A subset of the eigenvectors is obtained from the eigenvectors of the double discriminant matrix of the quantum Markov chain. To obtain the remaining eigenvectors, we have to use the quantum detailed balance conditions. If the quantum Markov chain has a quantum detailed balance, there is an eigenvector for each fundamental cycle of the underlying multigraph. If the quantum Markov chain does not have a quantum detailed balance, we have to use two fundamental cycles linked by a path in order to find the remaining eigenvectors. We exemplify the process of obtaining the eigenbasis of the evolution operator using the kagome lattice (the line graph of the hexagonal lattice), which has symmetry properties that help in the calculation process.

rate research

Read More

In this paper, we consider the scattering theory for a one-dimensional quantum walk with impurities which make reflections and transmissions. We focus on an explicit expression of the scattering operator. Our construction of the formula is based on the counting paths of quantum walkers. The Fourier transform of the scattering operator gives an explicit formula of the scattering matrix which is deeply related with the resonant-tunneling for quantum walks.
We study the asymptotic position distribution of general quantum walks on a lattice, including walks with a random coin, which is chosen from step to step by a general Markov chain. In the unitary (i.e., non-random) case, we allow any unitary operator, which commutes with translations, and couples only sites at a finite distance from each other. For example, a single step of the walk could be composed of any finite succession of different shift and coin operations in the usual sense, with any lattice dimension and coin dimension. We find ballistic scaling, and establish a direct method for computing the asymptotic distribution of position divided by time, namely as the distribution of the discrete time analog of the group velocity. In the random case, we let a Markov chain (control process) pick in each step one of finitely many unitary walks, in the sense described above. In ballistic order we find a non-random drift, which depends only on the mean of the control process and not on the initial state. In diffusive scaling the limiting distribution is asymptotically Gaussian, with a covariance matrix (diffusion matrix) depending on momentum. The diffusion matrix depends not only on the mean but also on the transition rates of the control process. In the non-random limit, i.e., when the coins chosen are all very close, or the transition rates of the control process are small, leading to long intervals of ballistic evolution, the diffusion matrix diverges. Our method is based on spatial Fourier transforms, and the first and second order perturbation theory of the eigenvalue 1 of the transition operator for each value of the momentum.
376 - Miquel Montero 2013
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the nowadays widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or move in a fixed direction, e.g., rightward or upward. While both formulations are essentially equivalent, the present approach leads to consider Discrete Fourier Transforms, which eventually results in obtaining explicit expressions for the wave functions in terms of finite sums, and allows the use of efficient algorithms based on the Fast Fourier Transform. The wave functions here obtained govern the probability of finding the particle at any given location, but determine as well the exit-time probability of the walker from a fixed interval, which is also analyzed.
Recently, the staggered quantum walk (SQW) on a graph is discussed as a generalization of coined quantum walks on graphs and Szegedy walks. We present a formula for the time evolution matrix of a 2-tessellable SQW on a graph, and so directly give its spectra. Furthermore, we present a formula for the Szegedy matrix of a bipartite graph by the same method, and so give its spectra. As an application, we present a formula for the characteristic polynomial of the modified Szegedy matrix in the quantum search problem on a graph, and give its spectra.
341 - M. Stefanak , B. Kollar , T. Kiss 2010
Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full-revival of its quantum state. Localization for two dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show on the example of the 2-D Grover walk that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full-revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference which has no counterpart in classical random walks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا