No Arabic abstract
Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full-revival of its quantum state. Localization for two dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show on the example of the 2-D Grover walk that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full-revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference which has no counterpart in classical random walks.
Full state revivals in a quantum walk can be viewed as returning of the walker to the initial quantum state in a periodic fashion during the propagation of the walk. In this paper we show that for any given number of spatial dimensions, a coin operator can be constructed to generate a quantum walk having full revivals with any desired period. From the point of view of quantum computation and simulations, these coin operators can be useful in implementing quantum walks which oscillate between any two states with a finite periodicity.
We provide an explanation of recent experimental results of Xue et al., where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for electric walks with a space-dependent, rather than a time-dependent coin, we provide a full explanation of the observations of Xue et al. We extend the analysis from periodic time-dependence to quasi-periodic behaviour with periods incommensurate to the step size. Spectral analysis, one of the principal tools for the study of electric walks, fails for time-dependent systems, but we find qualitative propagation behaviour of the time-dependent system in close analogy to the electric case.
Cavity-enhanced single photon sources exhibit mode-locked biphoton states with comb-like correlation functions. Our ultrabright source additionally emits either single photon pairs or two-photon NOON states, dividing the output into an even and an odd comb respectively. With even-comb photons we demonstrate revivals of the typical non-classical Hong-Ou-Mandel interference up to the 84th dip, corresponding to a path length difference exceeding 100 m. With odd-comb photons we observe single photon interference fringes modulated over twice the displacement range of the Hong-Ou-Mandel interference.
Revivals of initial non-equilibrium states is an ever-present concern for the theory of dynamic thermalization in many-body quantum systems. Here we consider a nonintegrable lattice of interacting spins 1/2 and show how to construct a quantum state such that a given spin 1/2 is maximally polarized initially and then exhibits an almost complete recovery of the initial polarization at a predetermined moment of time. An experimental observation of such revivals may be utilized to benchmark quantum simulators with a measurement of only one local observable. We further propose to utilize these revivals for a delayed disclosure of a secret.
A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. We derive an expression for hitting time using superoperators, and numerically evaluate it for the walk on the hypercube for various coins and decoherence models. We show that, by contrast to classical walks, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition for their existence. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Symmetries of a graph, given by its automorphism group, can be inherited by the evolution operator. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. Symmetry can also cause the walk to be confined to a subspace of the original Hilbert space for certain initial states. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph and we give an explicit construction of the quotient graph. We conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speed-up. Finally, we use symmetry and the theory of decoherence-free subspaces to determine when the subspace of the quotient graph is a decoherence-free subspace of the dynamics.