Do you want to publish a course? Click here

Scale-free Networks Well Done

193   0   0.0 ( 0 )
 Added by Dmitri Krioukov
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We bring rigor to the vibrant activity of detecting power laws in empirical degree distributions in real-world networks. We first provide a rigorous definition of power-law distributions, equivalent to the definition of regularly varying distributions that are widely used in statistics and other fields. This definition allows the distribution to deviate from a pure power law arbitrarily but without affecting the power-law tail exponent. We then identify three estimators of these exponents that are proven to be statistically consistent -- that is, converging to the true value of the exponent for any regularly varying distribution -- and that satisfy some additional niceness requirements. In contrast to estimators that are currently popular in network science, the estimators considered here are based on fundamental results in extreme value theory, and so are the proofs of their consistency. Finally, we apply these estimators to a representative collection of synthetic and real-world data. According to their estimates, real-world scale-free networks are definitely not as rare as one would conclude based on the popular but unrealistic assumption that real-world data comes from power laws of pristine purity, void of noise and deviations.



rate research

Read More

Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network that is guaranteed to become fractal by rewiring edges. Our results show that most of MD networks with different topologies are not fractal, which demonstrates that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation in similar degrees.
102 - Dan Lu 2016
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to its original state, which is considered resilient. Here, we study the resilience of epidemics on networks, by introducing a different infection rate ${lambda_{2}}$ during SIS (susceptible-infected-susceptible) epidemic propagation to model perturbations (control state), whereas the infection rate is ${lambda_{1}}$ in the rest of time. Through simulations and theoretical analysis, we find that even for ${lambda_{2}<lambda_{c}}$, epidemics eventually could bounce back if control duration is below a threshold. This critical control time for epidemic resilience, i.e., ${cd_{max}}$ can be predicted by the diameter (${d}$) of the underlying network, with the quantitative relation ${cd_{max}sim d^{alpha}}$. Our findings can help to design a better mitigation strategy for epidemics.
Many real-world complex systems are well represented as multilayer networks; predicting interactions in those systems is one of the most pressing problems in predictive network science. To address this challenge, we introduce two stochastic block models for multilayer and temporal networks; one of them uses nodes as its fundamental unit, whereas the other focuses on links. We also develop scalable algorithms for inferring the parameters of these models. Because our models describe all layers simultaneously, our approach takes full advantage of the information contained in the whole network when making predictions about any particular layer. We illustrate the potential of our approach by analyzing two empirical datasets---a temporal network of email communications, and a network of drug interactions for treating different cancer types. We find that modeling all layers simultaneously does result, in general, in more accurate link prediction. However, the most predictive model depends on the dataset under consideration; whereas the node-based model is more appropriate for predicting drug interactions, the link-based model is more appropriate for predicting email communication.
We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Rand index and of the adjusted Wallace index respectively. The detection of cores is highly precise although the accuracy of the methodology can be limited in some cases.
Background: Zipfs law and Heaps law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipfs law and the Heaps law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipfs law and the Heaps law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps law still exists with the disappearance of strict Zipfs law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipfs law and the Heaps law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا