Do you want to publish a course? Click here

Tensorial and bipartite block models for link prediction in layered networks and temporal networks

97   0   0.0 ( 0 )
 Added by Roger Guimera
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Many real-world complex systems are well represented as multilayer networks; predicting interactions in those systems is one of the most pressing problems in predictive network science. To address this challenge, we introduce two stochastic block models for multilayer and temporal networks; one of them uses nodes as its fundamental unit, whereas the other focuses on links. We also develop scalable algorithms for inferring the parameters of these models. Because our models describe all layers simultaneously, our approach takes full advantage of the information contained in the whole network when making predictions about any particular layer. We illustrate the potential of our approach by analyzing two empirical datasets---a temporal network of email communications, and a network of drug interactions for treating different cancer types. We find that modeling all layers simultaneously does result, in general, in more accurate link prediction. However, the most predictive model depends on the dataset under consideration; whereas the node-based model is more appropriate for predicting drug interactions, the link-based model is more appropriate for predicting email communication.



rate research

Read More

We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Rand index and of the adjusted Wallace index respectively. The detection of cores is highly precise although the accuracy of the methodology can be limited in some cases.
Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can potentially affect processes that take place on the network. However, most data-driven approaches used to model time-varying networks attempt to capture only a single characteristic time scale in isolation --- typically associated with the short-time memory of a Markov chain or with long-time abrupt changes caused by external or systemic events. Here we propose a unified approach to model both aspects simultaneously, detecting short and long-time behaviors of temporal networks. We do so by developing an arbitrary-order mixed Markov model with change points, and using a nonparametric Bayesian formulation that allows the Markov order and the position of change points to be determined from data without overfitting. In addition, we evaluate the quality of the multiscale model in its capacity to reproduce the spreading of epidemics on the temporal network, and we show that describing multiple time scales simultaneously has a synergistic effect, where statistically significant features are uncovered that otherwise would remain hidden by treating each time scale independently.
Many dynamical systems can be successfully analyzed by representing them as networks. Empirically measured networks and dynamic processes that take place in these situations show heterogeneous, non-Markovian, and intrinsically correlated topologies and dynamics. This makes their analysis particularly challenging. Randomized reference models (RRMs) have emerged as a general and versatile toolbox for studying such systems. Defined as random networks with given features constrained to match those of an input (empirical) network, they may for example be used to identify important features of empirical networks and their effects on dynamical processes unfolding in the network. RRMs are typically implemented as procedures that reshuffle an empirical network, making them very generally applicable. However, the effects of most shuffling procedures on network features remain poorly understood, rendering their use non-trivial and susceptible to misinterpretation. Here we propose a unified framework for classifying and understanding microcanonical RRMs (MRRMs) that sample networks with uniform probability. Focusing on temporal networks, we survey applications of MRRMs found in literature, and we use this framework to build a taxonomy of MRRMs that proposes a canonical naming convention, classifies them, and deduces their effects on a range of important network features. We furthermore show that certain classes of compatible MRRMs may be applied in sequential composition to generate new MRRMs from the existing ones surveyed in this article. We finally provide a tutorial showing how to apply a series of MRRMs to analyze how different network features affect a dynamic process in an empirical temporal network.
We consider state-aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the aggregated states separated by T time steps is maximized. We show that for T = 1 this approach recovers the maximum-likelihood estimator of the degree-corrected stochastic block model as a particular case, thereby enabling us to explain certain features of the likelihood landscape of this popular generative network model from a dynamical lens. We further highlight how we can uncover coherent, long-range dynamical modules for which considering a time-scale T >> 1 is essential, using synthetic flows and real-world ocean currents, where we are able to recover the fundamental features of the surface currents of the oceans.
Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا