No Arabic abstract
We present a sample of 17 objects from the CALIFA survey where we find initial evidence of galactic winds based on their off-axis ionization properties. We identify the presence of outflows using various optical diagnostic diagrams (e.g., EW(H$alpha$), [Nii]/H$alpha$, [Sii]/H$alpha$, [Oi]/H$alpha$ line-ratio maps). We find that all 17 candidate outflow galaxies lie along the sequence of active star formation in the M$_star$ vs. star-formation rate diagram, without a clear excess in the integrated SFR. The location of galaxies along the star-formation main sequence (SFMS) does not influence strongly the presence or not of outflows. The analysis of the star-formation rate density ($Sigma_{rm SFR}$) reveals that the CALIFA sources present higher values when compared with normal star-forming galaxies. The strength of this relation depends on the calibrator used to estimate the SFR. This excess in $Sigma_{rm SFR}$ is significant within the first effective radius supporting the idea that most outflows are driven by processes in the inner regions of a galaxy. We find that the molecular gas mass density ($Sigma_mathrm{gas}$) is a key parameter that plays an important role in the generation of outflows through its association with the local SFR. The canonical threshold reported for the generation of outflows -- $Sigma_{rm SFR}>0.1$ $mathrm{M}_odot mathrm{yr}^{-1} mathrm{kpc}^{-2}$ -- is only marginally exceeded in our sample. Within the Kennicutt-Schmidt diagram we propose a domain for galaxies hosting starburst-driven outflows defined by $Sigma_{rm SFR}>10^{-2} ,mathrm{M}_odot mathrm{yr}^{-1} mathrm{kpc}^{-2}$ and $Sigma_mathrm{gas}>10^{1.2} , mathrm{M}_odot mathrm{pc}^{-2}$ within a central kiloparcec region.
We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically-selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei, and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least 4 optically bright (log L_B>=10.2 LBsol) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65kpc and with luminosity >10^41 erg/s, while a further 3 groups host smaller galaxy-scale gas halos. The X-ray bright groups have masses in the range M_500=0.5-5x10^13 Msol, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200x10^41 erg/s. We find that ~53-65% of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30% of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ~35% of their dominant early-type galaxies host AGN with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (L_X,R500<10^42 erg/s) with no concentrated cool core, or highly disturbed. This leads us to suggest that ~20% of X-ray bright groups in the local universe may still be unidentified.
We estimate the current extinction-corrected H$alpha$ star formation rate (SFR) of the different morphological components that shape galaxies (bulges, bars, and disks). We use a multi-component photometric decomposition based on SDSS imaging to CALIFA Integral Field Spectroscopy datacubes for a sample of 219 galaxies. This analysis reveals an enhancement of the central SFR and specific SFR (sSFR $=$ SFR/$M_{star}$) in barred galaxies. Along the Main Sequence, we find more massive galaxies in total have undergone efficient suppression (quenching) of their star formation, in agreement with many studies. We discover that more massive disks have had their star formation quenched as well. We evaluate which mechanisms might be responsible for this quenching process. The presence of type-2 AGNs plays a role at damping the sSFR in bulges and less efficiently in disks. Also, the decrease in the sSFR of the disk component becomes more noticeable for stellar masses around 10$^{10.5}$ M$_{odot}$; for bulges, it is already present at $sim$10$^{9.5}$ M$_{odot}$. The analysis of the line-of-sight stellar velocity dispersions ($sigma$) for the bulge component and of the corresponding Faber-Jackson relation shows that AGNs tend to have slightly higher $sigma$ values than star-forming galaxies for the same mass. Finally, the impact of environment is evaluated by means of the projected galaxy density, $Sigma$$_{5}$. We find that the SFR of both bulges and disks decreases in intermediate-to-high density environments. This work reflects the potential of combining IFS data with 2D multi-component decompositions to shed light on the processes that regulate the SFR.
We present here AMUSINGtextrm{++}; the largest compilation of nearby galaxies observed with the MUSE integral field spectrograph so far. This collection consists of 635 galaxies from different MUSE projects covering the redshift interval $0.0002<z<0.1$. The sample and its main properties are characterized and described in here. It includes galaxies of almost all morphological types, with a good coverage in the color-magnitude diagram, within the stellar mass range between 10$^8$ to 10$^{12}$M$_odot$, and with properties resembling those of a diameter-selected sample. The AMUSING++ sample is therefore suitable to study, with unprecendent detail, the properties of nearby galaxies at global and local scales, providing us with more than 50 million individual spectra. We use this compilation to investigate the presence of galactic outflows. We exploit the use of combined emission-line images to explore the shape of the different ionized components and the distribution along classical diagnostic diagrams to disentangle the different ionizing sources across the optical extension of each galaxy. We use the cross correlation function to estimate the level of symmetry of the emission lines as an indication of the presence of shocks and/or active galactic nuclei. We uncovered a total of 54 outflows, comprising $sim$8% of the sample. A large number of the discovered outflows correspond to those driven by active galactic nuclei ($sim$60%), suggesting some bias in the selection of our sample. No clear evidence was found that outflow host galaxies are highly star-forming, and outflows appear to be found within all galaxies around the star formation sequence.
We perform a stacking analysis of the neutral ad,$lambdalambda$5889,5895,AA ISM doublet using the SDSS DR7 spectroscopic data set to probe the prevalence and characteristics of cold (T,$lesssim$,10$^{4}$,K) galactic-scale gas flows in local (0.025$leqslant zleqslant$0.1) inactive and AGN-host galaxies across the SFR-M$_{*}$ plane. We find low-velocity outflows to be prevalent in regions of high SFRs and stellar masses (10 $lesssim$log M$_{*}$/M$_{odot}$ $lesssim$ 11.5), however we do not find any detections in the low mass (log M$_{*}$/M$_{odot}$ $lesssim$ 10) regime. We also find tentative detections of inflowing gas in high mass galaxies across the star-forming population. We derive mass outflow rates in the range of 0.14-1.74,M$_{odot}$yr$^{-1}$ and upper limits on inflow rates <1,M$_{odot}$yr$^{-1}$, allowing us to place constraints on the mass loading factor ($eta$=$dot{M}_{text{out}}$/SFR) for use in simulations of the local Universe. We discuss the fate of the outflows by comparing the force provided by the starburst to the critical force needed to push the outflow outward, and find the vast majority of the outflows unlikely to escape the host system. Finally, as outflow detection rates and central velocities do not vary strongly with the presence of a (weak) active supermassive black hole, we determine that star formation appears to be the primary driver of outflows at $zsim$0.
The Calar Alto Legacy Integral Field Area survey (CALIFA survey) is providing Integral Field Spectroscopy (IFS) data in the entire optical window for a diameter-limited sample of 600 objects in the Local Universe (0.005$<$z$<$0.03). One of the main goals of this survey is to explore the spatial distribution of the star formation in nearby galaxies free from the limitations associated to either UV (dust attenuation) or narrow-band H$alpha$ imaging (underlying H$beta$ absorption). These are limitations that have prevented (until now) carrying out a detailed study of the evolution of the SFR by components (nuclei, bulges, disks), even locally. This kind of studies are key, for example, for understanding how galaxies really evolve from the Blue Cloud to the Red Sequence. We will first discuss in detail the validity of the assumption that the SFR given by the extincion-corrected H$alpha$ is a good measure of the total SFR by means of cross-comparing this with other SFR estimators, namely the integrated UV+22$mu$m, UV+TIR, H$alpha_{rm{obs}}$+22$mu$m, or H$alpha_{rm{obs}}$+TIR. Only once these effects are properly accounted for we can obtain preliminary results from the spatially-resolved analysis of the contribution of disks to the total SFR in the Local Universe, as a local benchmark for future studies of disks at high redshift. Our analysis shows that at least in the Local Universe the H$alpha$ luminosity derived from observations of the CALIFA IFS survey can be used to trace the SFR and that the disk to total (disk + bulge) SFR ratio is on average $sim$88 $%$.