No Arabic abstract
We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically-selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei, and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least 4 optically bright (log L_B>=10.2 LBsol) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65kpc and with luminosity >10^41 erg/s, while a further 3 groups host smaller galaxy-scale gas halos. The X-ray bright groups have masses in the range M_500=0.5-5x10^13 Msol, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200x10^41 erg/s. We find that ~53-65% of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30% of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ~35% of their dominant early-type galaxies host AGN with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (L_X,R500<10^42 erg/s) with no concentrated cool core, or highly disturbed. This leads us to suggest that ~20% of X-ray bright groups in the local universe may still be unidentified.
Using new 610 MHz and 235 MHz observations from the Giant Metrewave Radio Telescope (GMRT) in combination with archival GMRT and Very Large Array (VLA) survey data we present the radio properties of the dominant early-type galaxies in the low$-$richness sub-sample of the Complete Local-volume Groups Sample (CLoGS; 27 galaxy groups) and provide results for the radio properties of the full CLoGS sample for the first time. We find a high radio detection rate in the dominant galaxies of the low-richness sub-sample of 82% (22/27); for the full CLoGS sample, the detection rate is 87% (46/53). The group-dominant galaxies exhibit a wide range of radio power, 10$^{20}$ $-$ 10$^{25}$ W Hz$^{-1}$ in the 235 and 610 MHz bands, with the majority (53%) presenting point-like radio emission, 19% hosting currently active radio jets, 6% having remnant jets, 9% being diffuse and 13% having no detected radio emission. The mean spectral index of the detected radio sources in the 235$-$610 MHz frequency range is found to be $alpha_{235}^{610}sim$0.68, and $alpha_{235}^{1400}sim$0.59 in the 235$-$1400 MHz one. In agreement with earlier studies, we find that the fraction of ultra-steep spectrum sources ($alpha>$1.3) is $sim$4%, mostly dependent on the detection limit at 235 MHz. The majority of point-like systems are found to reside in dynamically young groups, whereas jet systems show no preference between spiral-rich and spiral-poor group environments. The mechanical power of the jet sources in the low$-$richness sample groups is estimated to be $sim$10$^{42}$ $-$ 10$^{44}$ erg s$^{-1}$ with their black hole masses ranging between 2$times$10$^{8}$ $-$ 5$times$10$^{9}$ M$_{odot}$. We confirm previous findings that, while radio jet sources tend to be associated with more massive black holes, black hole mass is not the decisive factor in determining jet activity or power.
We present a sample of 17 objects from the CALIFA survey where we find initial evidence of galactic winds based on their off-axis ionization properties. We identify the presence of outflows using various optical diagnostic diagrams (e.g., EW(H$alpha$), [Nii]/H$alpha$, [Sii]/H$alpha$, [Oi]/H$alpha$ line-ratio maps). We find that all 17 candidate outflow galaxies lie along the sequence of active star formation in the M$_star$ vs. star-formation rate diagram, without a clear excess in the integrated SFR. The location of galaxies along the star-formation main sequence (SFMS) does not influence strongly the presence or not of outflows. The analysis of the star-formation rate density ($Sigma_{rm SFR}$) reveals that the CALIFA sources present higher values when compared with normal star-forming galaxies. The strength of this relation depends on the calibrator used to estimate the SFR. This excess in $Sigma_{rm SFR}$ is significant within the first effective radius supporting the idea that most outflows are driven by processes in the inner regions of a galaxy. We find that the molecular gas mass density ($Sigma_mathrm{gas}$) is a key parameter that plays an important role in the generation of outflows through its association with the local SFR. The canonical threshold reported for the generation of outflows -- $Sigma_{rm SFR}>0.1$ $mathrm{M}_odot mathrm{yr}^{-1} mathrm{kpc}^{-2}$ -- is only marginally exceeded in our sample. Within the Kennicutt-Schmidt diagram we propose a domain for galaxies hosting starburst-driven outflows defined by $Sigma_{rm SFR}>10^{-2} ,mathrm{M}_odot mathrm{yr}^{-1} mathrm{kpc}^{-2}$ and $Sigma_mathrm{gas}>10^{1.2} , mathrm{M}_odot mathrm{pc}^{-2}$ within a central kiloparcec region.
We present a well-defined and characterized all-sky sample of classical Cepheids in the Milky Way, obtained by combining two time-domain all-sky surveys: Gaia DR2 (Gaia Collaboration et al. 2018) and ASAS-SN (Shappee et al. 2014). We first use parallax and variability information from Gaia to select ~30,000 bright (G<17) Cepheid candidates with M_K<-1. We then analyze their ASAS-SN V-band lightcurves, determining periods, and classifying the lightcurves using their Fourier parameters. This results in ~1900 likely Galactic Cepheids, which we estimate to be >90% complete and pure within our adopted selection criteria. This is the largest all-sky sample of Milky Way Cepheids that has such a well-characterized selection function, needed for population modeling and for systematic spectroscopic follow-up foreseen with SDSS-V. About 130 of these Cepheids have not been documented in the literature even as possible candidates.
We describe a complete volume limited sample of nearby active galaxies selected by their 14-195keV luminosity, and outline its rationale for studying the mechanisms regulating gas inflow and outflow. We describe also a complementary sample of inactive galaxies, selected to match the AGN host galaxy properties. The active sample appears to have no bias in terms of AGN type, the only difference being the neutral absorbing column which is two orders of magnitude greater for the Seyfert 2s. In the luminosity range spanned by the sample, log L_{14-195keV} [erg/s] = 42.4-43.7, the optically obscured and X-ray absorbed fractions are 50-65%. The similarity of these fractions to more distant spectroscopic AGN samples, although over a limited luminosity range, suggests that the torus does not strongly evolve with redshift. Our sample confirms that X-ray unabsorbed Seyfert 2s are rare, comprising not more than a few percent of the Seyfert 2 population. At higher luminosities, the optically obscured fraction decreases (as expected for the increasing dust sublimation radius), but the X-ray absorbed fraction changes little. We argue that the cold X-ray absorption in these Seyfert 1s can be accounted for by neutral gas in clouds that also contribute to the broad line region (BLR) emission; and suggest that a geometrically thick neutral gas torus co-exists with the BLR and bridges the gap to the dusty torus.
We cross-identified the ROSAT Bright Source Catalog (RBSC) and the NRAO VLA Sky Survey (NVSS) to construct the RBSC-NVSS sample of the brightest X-ray sources (>= 0.1 counts/s or ~1E-12 ergs/cm/cm/s in the 0.1-2.4 keV band) that are also radio sources (S >= 2.5 mJy at 1.4 GHz) in the 7.8 sr of extragalactic sky with |b| > 15 degrees. and delta > -40 degrees. The sky density of NVSS sources is low enough that they can be reliably identified with RBSC sources having average rms positional uncertainties = 10 arcsec. We used the more accurate radio positions to make reliable X-ray/radio/optical identifications down to the POSS plate limits. We obtained optical spectra for many of the bright identifications lacking published redshifts. The resulting X-ray/radio sample is unique in its size (N ~ 1500 objects), composition (a mixture of nearly normal galaxies, Seyfert galaxies, quasars, and clusters), and low average redshift (<z> ~ 0.1).