Do you want to publish a course? Click here

Hunting for radio emission from the intermittent pulsar J1107-5907 at low frequencies

76   0   0.0 ( 0 )
 Added by Bradley Meyers
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The rare intermittent pulsars pose some of the most challenging questions surrounding the pulsar emission mechanism, but typically have relatively minimal low-frequency ($lesssim$ 300 MHz) coverage. We present the first low-frequency detection of the intermittent pulsar J1107-5907 with the Murchison Widefield Array (MWA) at 154 MHz and the simultaneous detection from the recently upgraded Molonglo Observatory Synthesis Telescope (UTMOST) at 835 MHz, as part of an on-going observing campaign. During a 30-minute simultaneous observation, we detected the pulsar in its bright emission state for approximately 15 minutes, where 86 and 283 pulses were detected above a signal-to-noise threshold of 6 with the MWA and UTMOST, respectively. Of the detected pulses, 51 had counterparts at both frequencies and exhibited steep spectral indices for both the bright main pulse component and the precursor component. We find that the bright state pulse energy distribution is best parameterised by a log-normal distribution at both frequencies, contrary to previous results which suggested a power law distribution. Further low-frequency observations are required in order to explore in detail aspects such as pulse-to-pulse variability, intensity modulations and to better constrain the signal propagation effects due to the interstellar medium and intermittency characteristics at these frequencies. The spectral index, extended profile emission covering a large fraction of pulse longitude, and the broadband intermittency of PSR J1107-5907 suggests that future low-frequency pulsar searches, for instance those planned with SKA-Low, will be in an excellent position to find and investigate new pulsars of this type.

rate research

Read More

The emission from PSR J1107-5907 is erratic. Sometimes the radio pulse is undetectable, at other times the pulsed emission is weak, and for short durations the emission can be very bright. In order to improve our understanding of these state changes, we have identified archival data sets from the Parkes radio telescope in which the bright emission is present, and find that the emission never switches from the bright state to the weak state, but instead always transitions to the off state. Previous work had suggested the identification of the off state as an extreme manifestation of the weak state. However, the connection between the off and bright emission reported here suggests that the emission can be interpreted as undergoing only two emission states: a bursting state consisting of both bright pulses and nulls as well as the weak-emission state.
139 - G. Hobbs , I. Heywood , M. E. Bell 2015
We use observations from the Boolardy Engineering Test Array (BETA) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to search for transient radio sources in the field around the intermittent pulsar PSR J1107-5907. The pulsar is thought to switch between an off state in which no emission is detectable, a weak state and a strong state. We ran three independent transient detection pipelines on two-minute snapshot images from a 13 hour BETA observation in order to 1) study the emission from the pulsar, 2) search for other transient emission from elsewhere in the image and 3) to compare the results from the different transient detection pipelines. The pulsar was easily detected as a transient source and, over the course of the observations, it switched into the strong state three times giving a typical timescale between the strong emission states of 3.7 hours. After the first switch it remained in the strong state for almost 40 minutes. The other strong states lasted less than 4 minutes. The second state change was confirmed using observations with the Parkes radio telescope. No other transient events were found and we place constraints on the surface density of such events on these timescales. The high sensitivity Parkes observations enabled us to detect individual bright pulses during the weak state and to study the strong state over a wide observing band. We conclude by showing that future transient surveys with ASKAP will have the potential to probe the intermittent pulsar population.
80 - Olaf Wucknitz 2019
Interstellar scattering is known to broaden distant objects spatially and temporally. The latter aspect is difficult to analyse, unless the signals carry their own time stamps. Pulsars are so kind to do us this favour. Typically the signature is a broadened image with little or no substructure and a similarly smooth exponential scattering tail in the temporal profile. The case of the pulsar B1508+55 is special: The profile shows additional components that are moving relative to the main pulse with time. We use low-frequency VLBI with LOFAR to test the hypothesis that these components are actually such scattering-induced echoes, by trying to detect the expected angular offset. Using international stations (plus the Kilpisjarvi Atmospheric Imaging Receiver Array KAIRA) and the phased-up core of the LOFAR array, we can do interferometry at high resolution in time and space. This contribution presents a selection of results from an ongoing large-scale monitoring campaign. We can not only detect the offset, but even image a full string of echoes, and relate the positions with delays. What we find is apparently consistent with scattering by highly aligned components in a single screen at a distance of 120 pc. Further investigations will improve our understanding of the scattering process as basis of using the scattering-induced subimages as arms of a giant interstellar interferometer with insanely high resolution.
Ultra-low frequency observations (<100 MHz) are particularly challenging because they are usually performed in a low signal-to-noise ratio regime due to the high sky temperature and because of ionospheric disturbances whose effects are inversely proportional to the observing frequency. Nonetheless, these observations are crucial to study the emission from low-energy populations of cosmic rays. We aim to obtain the first thermal-noise limited (~ 1.5 mJy/beam) deep continuum radio map using the LOFAR Low Band Antenna (LBA) system. Our demonstration observation targeted the galaxy cluster RX J0603.3+4214 (the Toothbrush cluster). We used the resulting ultra-low frequency (58 MHz) image to study cosmic-ray acceleration and evolution in the post shock region, as well as their relation with the presence of a radio halo. We describe the data reduction we have used to calibrate LOFAR LBA observations. The resulting image is combined with observations at higher frequencies (LOFAR 150 MHz and VLA 1500 MHz) to extract spectral information. We obtained the first thermal-noise limited image from an observation carried out with the LOFAR LBA system using all Dutch stations at a central frequency of 58 MHz. With 8 hours of data, we reached an rms noise of 1.3 mJy/beam at a resolution of 18 x 11. The procedure we have developed is an important step forward towards routine high-fidelity imaging with the LOFAR LBA. The analysis of the radio spectra shows that the radio relic extends to distances of 800 kpc downstream from the shock front, larger than what allowed by electron cooling time. Furthermore, the shock wave started accelerating electrons already at a projected distance of <300 kpc from the crossing point of the two clusters. These results can be explained if electrons are reaccelerated downstream by background turbulence possibly combined with projection effects.
234 - M. N. Iacolina 2009
The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-314 in three steps, correcting for the effect of the dispersion due to the interstellar medium, eliminating the orbital motions effects, and finally folding the time series. No radio pulsation is present in the analyzed data down to a limit of 68 microJy at 6.4 GHz and 26 microJy at 8.5 GHz. We discuss several mechanisms that could prevent the detection, concluding that beaming factor and intrinsic low luminosity are the most likely explanations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا