No Arabic abstract
We aim to better exploit the limited amounts of parallel text available in low-resource settings by introducing a differentiable reconstruction loss for neural machine translation (NMT). This loss compares original inputs to reconstructed inputs, obtained by back-translating translation hypotheses into the input language. We leverage differentiable sampling and bi-directional NMT to train models end-to-end, without introducing additional parameters. This approach achieves small but consistent BLEU improvements on four language pairs in both translation directions, and outperforms an alternative differentiable reconstruction strategy based on hidden states.
Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways - loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformer-based system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of WMT 16 En-De.
Neural approaches have achieved state-of-the-art accuracy on machine translation but suffer from the high cost of collecting large scale parallel data. Thus, a lot of research has been conducted for neural machine translation (NMT) with very limited parallel data, i.e., the low-resource setting. In this paper, we provide a survey for low-resource NMT and classify related works into three categories according to the auxiliary data they used: (1) exploiting monolingual data of source and/or target languages, (2) exploiting data from auxiliary languages, and (3) exploiting multi-modal data. We hope that our survey can help researchers to better understand this field and inspire them to design better algorithms, and help industry practitioners to choose appropriate algorithms for their applications.
We explore ways of incorporating bilingual dictionaries to enable semi-supervised neural machine translation. Conventional back-translation methods have shown success in leveraging target side monolingual data. However, since the quality of back-translation models is tied to the size of the available parallel corpora, this could adversely impact the synthetically generated sentences in a low resource setting. We propose a simple data augmentation technique to address both this shortcoming. We incorporate widely available bilingual dictionaries that yield word-by-word translations to generate synthetic sentences. This automatically expands the vocabulary of the model while maintaining high quality content. Our method shows an appreciable improvement in performance over strong baselines.
The data scarcity in low-resource languages has become a bottleneck to building robust neural machine translation systems. Fine-tuning a multilingual pre-trained model (e.g., mBART (Liu et al., 2020)) on the translation task is a good approach for low-resource languages; however, its performance will be greatly limited when there are unseen languages in the translation pairs. In this paper, we present a continual pre-training (CPT) framework on mBART to effectively adapt it to unseen languages. We first construct noisy mixed-language text from the monolingual corpus of the target language in the translation pair to cover both the source and target languages, and then, we continue pre-training mBART to reconstruct the original monolingual text. Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline, as well as other strong baselines, across all tested low-resource translation pairs containing unseen languages. Furthermore, our approach also boosts the performance on translation pairs where both languages are seen in the original mBARTs pre-training. The code is available at https://github.com/zliucr/cpt-nmt.
Neural Machine Translation (NMT) has become a popular technology in recent years, and the encoder-decoder framework is the mainstream among all the methods. Its obvious that the quality of the semantic representations from encoding is very crucial and can significantly affect the performance of the model. However, existing unidirectional source-to-target architectures may hardly produce a language-independent representation of the text because they rely heavily on the specific relations of the given language pairs. To alleviate this problem, in this paper, we propose a novel Bi-Decoder Augmented Network (BiDAN) for the neural machine translation task. Besides the original decoder which generates the target language sequence, we add an auxiliary decoder to generate back the source language sequence at the training time. Since each decoder transforms the representations of the input text into its corresponding language, jointly training with two target ends can make the shared encoder has the potential to produce a language-independent semantic space. We conduct extensive experiments on several NMT benchmark datasets and the results demonstrate the effectiveness of our proposed approach.