Do you want to publish a course? Click here

APOGEE DR14/DR15 Abundances in the Inner Milky Way

98   0   0.0 ( 0 )
 Added by Gail Zasowski
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of the distributions of 11 elemental abundances in the Milky Ways inner regions, as traced by APOGEE stars released as part of SDSS Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na, Al, and K. This sample spans ~4000 stars with R_GC<4 kpc, enabling the most comprehensive study to date of these abundances and their variations within the innermost few kiloparsecs of the Milky Way. We describe the observed abundance patterns ([X/Fe]-[Fe/H]), compare to previous literature results and to patterns in stars at the solar Galactic radius, and discuss possible trends with DR14/DR15 effective temperatures. We find that the position of the [Mg/Fe]-[Fe/H] knee is nearly constant with R_GC, indicating a well-mixed star-forming medium or high levels of radial migration in the early inner Galaxy. We quantify the linear correlation between pairs of elements in different subsamples of stars and find that these relationships vary; some abundance correlations are very similar between the alpha-rich and alpha-poor stars, but others differ significantly, suggesting variations in the metallicity dependencies of certain supernova yields. These empirical trends will form the basis for more detailed future explorations and for the refinement of model comparison metrics. That the inner Milky Way abundances appear dominated by a single chemical evolutionary track and that they extend to such high metallicities underscore the unique importance of this part of the Galaxy for constraining the ingredients of chemical evolution modeling and for improving our understanding of the evolution of the Galaxy as a whole.



rate research

Read More

We use hydrodynamical simulations to construct a new coherent picture for the gas flow in the Central Molecular Zone (CMZ), the region of our Galaxy within $Rleq 500, mathrm{pc}$. We relate connected structures observed in $(l,b,v)$ data cubes of molecular tracers to nuclear spiral arms. These arise naturally in hydrodynamical simulations of barred galaxies, and are similar to those that can be seen in external galaxies such as NGC4303 or NGC1097. We discuss a face-on view of the CMZ including the position of several prominent molecular clouds, such as Sgr B2, the $20,{rm km, s^{-1}}$ and $50,{rm km, s^{-1}}$ clouds, the polar arc, Bania Clump 2 and Sgr C. Our model is also consistent with the larger scale gas flow, up to $Rsimeq 3,rm kpc$, thus providing a consistent picture of the entire Galactic bar region.
We report chemical abundances obtained by SDSS-III/APOGEE for giant stars in five globular clusters located within 2.2 kpc of the Galactic centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, Terzan 5, and Palomar 6) and find strong evidence for their presence in NGC 6522. All clusters present a significant spread in the abundances of N, C, Na, and Al, with the usual correlations and anti-correlations between various abundances seen in other globular clusters. Our results provide important quantitative constraints on theoretical models for self-enrichment of globular clusters, by testing their predictions for the dependence of yields of elements such as Na, N, C, and Al on metallicity. They also confirm that, under the assumption that field N-rich stars originate from globular cluster destruction, they can be used as tracers of their parental systems in the high- metallicity regime.
The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf (Sgr), Fornax (Fnx), and the now fully disrupted emph{Gaia} Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [$alpha$/Fe]-[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the MCs observed by Nidever et al. in the $alpha$-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3-4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier ($sim$~5-7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.
142 - Constance Rockosi 2009
The history of the Milky Way is encoded in the spatial distributions, kinematics, and chemical enrichment patterns of its resolved stellar populations. SEGUE-2 and APOGEE, two of the four surveys that comprise SDSS-III (the Sloan Digital Sky Survey III), will map these distributions and enrichment patterns at optical and infrared wavelengths, respectively. Using the existing SDSS spectrographs, SEGUE-2 will obtain spectra of 140,000 stars in selected high-latitude fields to a magnitude limit r ~ 19.5, more than doubling the sample of distant halo stars observed in the SDSS-II survey SEGUE (the Sloan Extension for Galactic Understanding and Exploration). With spectral resolution R ~ 2000 and typical S/N per pixel of 20-25, SEGUE and SEGUE-2 measure radial velocities with typical precision of 5-10 km/s and metallicities ([Fe/H]) with a typical external error of 0.25 dex. APOGEE (the Apache Point Observatory Galactic Evolution Experiment) will use a new, 300-fiber H-band spectrograph (1.5-1.7 micron) to obtain high-resolution (R ~ 24,000), high signal-to-noise ratio (S/N ~ 100 per pixel) spectra of 100,000 red giant stars to a magnitude limit H ~ 12.5. Infrared spectroscopy penetrates the dust that obscures the inner Galaxy from our view, allowing APOGEE to carry out the first large, homogeneous spectroscopic survey of all Galactic stellar populations. APOGEE spectra will allow radial velocity measurements with < 0.5 km/s precision and abundance determinations (with ~ 0.1 dex precision) of 15 chemical elements for each program star, which can be used to reconstruct the history of star formation that produced these elements. (abridged)
The following is a comment on the recent letter by Iocco et al. (2015, arXiv:1502.03821) where the authors claim to have found ...convincing proof of the existence of dark matter.... The letter in question presents a compilation of recent rotation curve observations for the Milky Way, together with Newtonian rotation curve estimates based on recent baryonic matter distribution measurements. A mismatch between the former and the latter is then presented as evidence for dark matter. Here we show that the reported discrepancy is the well known gravitational anomaly which consistently appears when dynamical accelerations approach the critical Milgrom acceleration a_0 = 1.2 times 10^{-10} m / s^2. Further, using a simple modified gravity force law, the baryonic models presented in Iocco et al. (2015), yield dynamics consistent with the observed rotation values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا