No Arabic abstract
In this paper, the shadows cast by non-rotating and rotating modified gravity black holes are investigated. In addition to the black hole spin parameter $a$ and the inclination angle $theta$ of observer, another parameter $alpha$ measuring the deviation of gravitational constant from the Newton one is also found to affect the shape of the black hole shadow. The result shows that, for fixed values of $a/M$ and $theta$, the size and perimeter of the shadows cast by the non-rotating and rotating black holes significantly increase with the parameter $alpha$, while the distortions decrease with $alpha$. Moreover, the energy emission rate of the black hole in high energy case is also investigated, and the result shows that the peak of the emission rate decreases with the parameter $alpha$.
In the context of the recently proposed type-II minimally modified gravity theory, i.e. a metric theory of gravity with two local physical degrees of freedom that does not possess an Einstein frame, we study spherically symmetric vacuum solutions to explore the strong gravity regime. Despite the absence of extra degrees of freedom in the gravity sector, the vacuum solutions are locally different from the Schwarzschild or Schwarzschild-(A)dS metric in general and thus the Birkhoff theorem does not hold. The general solutions are parameterized by several free functions of time and admit regular trapping and event horizons. Depending on the choice of the free functions of time, the null convergence condition may be violated in vacuum. Even in the static limit, while the solutions in this limit reduce to the Schwarzschild or Schwarzschild-(A)dS solutions, the effective cosmological constant deduced from the solutions is in general different from the cosmological value that is determined by the action. Nonetheless, once a set of suitable asymptotic conditions is imposed so that the solutions represent compact objects in the corresponding cosmological setup, the standard Schwarzschild or Schwarzschild-(A)dS metric is recovered and the effective cosmological constant agrees with the value inferred from the action.
We analytically derive a class of non-singular, static and spherically symmetric topological black hole metrics inF(R)-gravity. These have not a de Sitter core at their centre, as most model in standard General Relativity. We study the geometric properties and the motion of test particles around these objects. Since they have two horizons, the inner being of Cauchy type, we focus on the problem of mass inflation and show that it occurs except when some extremal conditions are met.
Recent strong-field regime tests of gravity are so far in agreement with general relativity. In particular, astrophysical black holes appear all to be consistent with the Kerr spacetime, but the statistical error on current observations allows for small yet detectable deviations from this description. Here we study superradiance of scalar and electromagnetic test fields around the Kerr-like Konoplya--Zhidenko black hole and we observe that for large values of the deformation parameter superradiance is highly suppressed with respect to the Kerr case. Surprisingly, there exists a range of small values of the deformation parameter for which the maximum amplification factor is larger than the Kerr one. We also provide a first result about the superradiant instability of these non-Kerr spacetimes against massive scalar fields.
In the Einstein-bumblebee gravity, the Lorentz symmetry is spontaneously broken by a vector field. In this paper, we attempt to test the Lorentz symmetry via the observation of the shadow cast by the Kerr-like black hole with or without plasma. A novel phenomenon of the Lorentz-violating parameter on the shadow is observed. The result shows that when the observer gradually moves from the poles to the equatorial plane, the shadow radius $R_{rm s}$ firstly decreases and then increases with the Lorentz-violating parameter. Such nonmonotonic behavior provides us an important understanding on the black hole shadow in the Einstein-bumblebee gravity. Besides, three more distortion observables are calculated, and found to increase with the Lorentz-violating parameter. Moreover, when a homogeneous plasma is present, the motion of the photon is analyzed. We further observe that the refractive index shrinks the size, while enhances the deformation of the shadow. Finally, adopting the observed data of the diameter of M87$^*$, we find the refractive index is more favored in (0.914, 1).
In this work, taking the QED effect into account, we investigate the shadows of the Kerr black holes immersed in uniform magnetic fields through the numerical backward ray-tracing method. We introduce a dimensionless parameter $Lambda$ to characterize the strength of magnetic fields and studied the influence of magnetic fields on the Kerr black hole shadows for various spins of the black holes and inclination angles of the observers. In particular, we find that the photon hairs appear near the left edge of the shadow in the presence of magnetic fields. The photon hairs may be served as a signature of the magnetic fields. We notice that the photon hairs become more evident when the strength of magnetic fields or the spin of the black hole becomes larger. In addition, we study the deformation of the shadows by bringing in quantitative parameters that can describe the position and shape of the shadow edge.