No Arabic abstract
An S-fold has played an important role in constructing supersymmetric field theories with interesting features. It can be viewed as a type of AdS_4 solutions of Type IIB string theory where the fields in overlapping patches are glued by elements of SL(2,Z). This paper examines three dimensional quiver theories that arise from brane configurations with an inclusion of the S-fold. An important feature of such a quiver is that it contains a link, which is the T(U(N)) theory, between two U(N) groups, along with bifundamental and fundamental hypermultiplets. We systematically study the moduli spaces of those quiver theories, including the cases in which the non-zero Chern-Simons levels are turned on. A number of such moduli spaces turns out to have a very rich structure and tells us about the brane dynamics in the presence of an S-fold.
A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of superconformal field theories, known as the S-fold CFTs. Previously it has been proposed that the corresponding quiver theory has a link involving the T(U(N)) theory. In this paper, we generalise the preceding result by studying quivers that contain a T(G) link, where G is self-dual under S-duality. In particular, the cases of G = SO(2N), USp(2N) and G_2 are examined in detail. We propose the theories that arise from an appropriate insertion of an S-fold into a brane system, in the presence of an orientifold threeplane or an orientifold fiveplane. By analysing the moduli spaces, we test such a proposal against its S-dual configuration using mirror symmetry. The case of G_2 corresponds to a novel class of quivers, whose brane construction is not available. We present several mirror pairs, containing G_2 gauge groups, that have not been discussed before in the literature.
Magnetic quivers and Hasse diagrams for Higgs branches of rank $r$ 4d $mathcal{N}=2$ SCFTs arising from $mathbb{Z}_{ell}$ $mathcal{S}$-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues like dimension, global symmetry, and the folding parameter $ell$ to guess the magnetic quiver. 2) From 6d $mathcal{N}=(1,0)$ SCFTs as UV completions of 5d marginal theories, and specific FI deformations on their magnetic quiver, which is further folded by $mathbb{Z}_{ell}$. 3) From T-duality of Type IIA brane systems of 6d $mathcal{N}=(1,0)$ SCFTs and explicit mass deformation of the resulting brane web followed by $mathbb{Z}_{ell}$ folding. A choice of the ungauging scheme, either on a long node or on a short node, yields two different moduli spaces related by an orbifold action, thus suggesting a larger set of SCFTs in four dimensions than previously expected.
Enhancement of global symmetry and supersymmetry in the infrared is one of the most intriguing phenomena in quantum field theory. We investigate such phenomena in a large class of three dimensional superconformal field theories, known as the S-fold SCFTs. Supersymmetric indices are computed for a number of theories containing small rank gauge groups. It is found that indices of several models exhibit enhancement of supersymmetry at the superconformal fixed point in the infrared. Dualities between S-fold theories that have different quiver descriptions are also analysed. We explore a new class of theories with a discrete global symmetry, whose gauge symmetry in the quiver has a different global structure from those that have been studied earlier.
The Bagger-Witten line bundle is a line bundle over moduli spaces of two-dimensional SCFTs, related to the Hodge line bundle of holomorphic top-forms on Calabi-Yau manifolds. It has recently been a subject of a number of conjectures, but concrete examples have proven elusive. In this paper we collect several results on this structure, including a proposal for an intrinsic geometric definition over moduli spaces of Calabi-Yau manifolds and some additional concrete examples. We also conjecture a new criterion for UV completion of four-dimensional supergravity theories in terms of properties of the Bagger-Witten line bundle.
Harmonic maps that minimise the Dirichlet energy in their homotopy classes are known as lumps. Lump solutions on real projective space are explicitly given by rational maps subject to a certain symmetry requirement. This has consequences for the behaviour of lumps and their symmetries. An interesting feature is that the moduli space of charge three lumps is a $7$-dimensional manifold of cohomogeneity one which can be described as a one-parameter family of symmetry orbits of $D_2$ symmetric maps. In this paper, we discuss the charge three moduli spaces of lumps from two perspectives: discrete symmetries of lumps and the Riemann-Hurwitz formula. We then calculate the metric and find explicit formulas for various geometric quantities. We also discuss the implications for lump decay.