Larson and Saleh [Optica 5, 1382 (2018)] suggest that Rayeleighs curse can recur and become unavoidable if the two sources are partially coherent. Here we show that their calculations and assertions have fundamental problems, and spatial-mode demultiplexing (SPADE) can overcome Rayleighs curse even for partially coherent sources.
It has been argued that, for a spatially invariant imaging system, the information one can gain about the separation of two incoherent point sources decays quadratically to zero with decreasing separation, an effect termed Rayleighs curse. Contrary to this belief, we identify a class of point spread functions with a linear information decrease. Moreover, we show that any well-behaved symmetric point spread function can be converted into such a form with a simple nonabsorbing signum filter. We experimentally demonstrate significant superresolution capabilities based on this idea.
State representations summarize our knowledge about a system. When unobservable quantities are introduced the state representation is typically no longer unique. However, this non-uniqueness does not affect subsequent inferences based on any observable data. We demonstrate that the inference-free subspace may be extracted whenever the quantitys unobservability is guaranteed by a global conservation law. This result can generalize even without such a guarantee. In particular, we examine the coherent-state representation of a laser where the absolute phase of the electromagnetic field is believed to be unobservable. We show that experimental coherent states may be separated from the inference-free subspaces induced by this unobservable phase. These physical states may then be approximated by coherent states in a relative-phase Hilbert space.
The coherence of a hyperfine-state superposition of a trapped $^{9}$Be$^+$ ion in the presence of off-resonant light is experimentally studied. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does not affect coherence. Coherence times exceeding the average scattering time of 19 photons are observed. This result implies that, with sufficient control over its parameters, laser light can be used to manipulate hyperfine-state superpositions with very little decoherence.
In a recent interesting Letter [Phys. Rev. Lett. 108, 140401 (2012)] I. Bialynicki-Birula and his coauthor have derived the uncertainty relation for the photons in three dimensions. However, some of their arguments are problematical, and this impacts their conclusion.
The basic idea behind Rayleighs criterion on resolving two incoherent optical point sources is that the overlap between the spatial modes from different sources would reduce the estimation precision for the locations of the sources, dubbed Rayleighs curse. We generalize the concept of Rayleighs curse to the abstract problems of quantum parameter estimation with incoherent sources. To manifest the effect of Rayleighs curse on quantum parameter estimation, we define the curse matrix in terms of quantum Fisher information and introduce the global and local immunity to the curse accordingly. We further derive the expression for the curse matrix and give the necessary and sufficient condition on the immunity to Rayleighs curse. For estimating the one-dimensional location parameters with a common initial state, we demonstrate that the global immunity to the curse on quantum Fisher information is impossible for more than two sources.