Do you want to publish a course? Click here

Tempering Rayleighs curse with PSF shaping

142   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been argued that, for a spatially invariant imaging system, the information one can gain about the separation of two incoherent point sources decays quadratically to zero with decreasing separation, an effect termed Rayleighs curse. Contrary to this belief, we identify a class of point spread functions with a linear information decrease. Moreover, we show that any well-behaved symmetric point spread function can be converted into such a form with a simple nonabsorbing signum filter. We experimentally demonstrate significant superresolution capabilities based on this idea.



rate research

Read More

Larson and Saleh [Optica 5, 1382 (2018)] suggest that Rayeleighs curse can recur and become unavoidable if the two sources are partially coherent. Here we show that their calculations and assertions have fundamental problems, and spatial-mode demultiplexing (SPADE) can overcome Rayleighs curse even for partially coherent sources.
67 - Lijun Peng , Xiao-Ming Lu 2020
The basic idea behind Rayleighs criterion on resolving two incoherent optical point sources is that the overlap between the spatial modes from different sources would reduce the estimation precision for the locations of the sources, dubbed Rayleighs curse. We generalize the concept of Rayleighs curse to the abstract problems of quantum parameter estimation with incoherent sources. To manifest the effect of Rayleighs curse on quantum parameter estimation, we define the curse matrix in terms of quantum Fisher information and introduce the global and local immunity to the curse accordingly. We further derive the expression for the curse matrix and give the necessary and sufficient condition on the immunity to Rayleighs curse. For estimating the one-dimensional location parameters with a common initial state, we demonstrate that the global immunity to the curse on quantum Fisher information is impossible for more than two sources.
A method for time differentiation based on a Babinet-Soleil-Bravais compensator is introduced. The complex transfer function of the device is measured using polarization spectral interferometry. Time differentiation of both the pulse field and pulse envelope are demonstrated over a spectral width of about 100 THz with a measured overlap with the objective mode greater than 99.8%. This pulse shaping technique is shown to be perfectly suited to time metrology at the quantum limit.
We introduce a tempering approach with stochastic density functional theory (sDFT), labeled t-sDFT, which reduces the statistical errors in the estimates of observable expectation values. This is achieved by rewriting the electronic density as a sum of a warm component complemented by colder correction(s). Since the warm component is larger in magnitude but faster to evaluate, we use many more stochastic orbitals for its evaluation than for the smaller-sized colder correction(s). This results in a significant reduction of the statistical fluctuations and the bias compared to sDFT for the same computational effort. We the methods performance on large hydrogen-passivated silicon nanocrystals (NCs), finding a reduction in the systematic error in the energy by more than an order of magnitude, while the systematic errors in the forces are also quenched. Similarly, the statistical fluctuations are reduced by factors of around 4-5 for the total energy and around 1.5-2 for the forces on the atoms. Since the embedding in t-sDFT is fully stochastic, it is possible to combine t-sDFT with other variants of sDFT such as energy-window sDFT and embedded-fragmented sDFT.
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strength of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا