Do you want to publish a course? Click here

Semileptonic $D_{(s)}$-meson decays in the light of recent data

82   0   0.0 ( 0 )
 Added by Chien-Thang Tran
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Inspired by recent improved measurements of charm semileptonic decays at BESIII, we study a large set of $D(D_s)$-meson semileptonic decays where the hadron in the final state is one of $D^0$, $rho$, $omega$, $eta^{(prime)}$ in the case of $D^+$ decays, and $D^0$, $phi$, $K^0$, $K^ast(892)^0$, $eta^{(prime)}$ in the case of $D^+_s$ decays. The required hadronic form factors are computed in the full kinematical range of momentum transfer by employing the covariant confined quark model developed by us. A detailed comparison of the form factors with those from other approaches is provided. We calculate the decay branching fractions and their ratios, which show good agreement with available experimental data. We also give predictions for the forward-backward asymmetry and the longitudinal and transverse polarizations of the charged lepton in the final state.



rate research

Read More

We study the semileptonic decays of $B_c$ meson to S-wave charmonium states in the framework of relativistic independent quark model based on an average flavor-independent confining potential $U(r)$ in the scalar-vector harmonic form $U(r)=frac{1}{2}(1+gamma^0)(ar^2+V_0)$, where ($a$, $V_0$) are the potential parameters.The form factors for $B_c^+to eta_c /psi e^+ u_e$ transitions are studied in the physical kinematic range. Our predicted branching ratios (BR) for transitions to ground state charmonia are found comparatively large $sim $ $10^{-2}$, compared to those for transitions to radially excited 2S and 3S states. Like all other mpdel predictions, our predicted BR are obtained in the hierarchy: BR($B_c^+to eta_c /psi (3S)$) $<$ BR($B_c^+to eta_c/ psi (2S)$) $<$ BR($B_c^+to eta_c /psi (1S)$). The longitudinal ($Gamma_L$) and transverse polarization ($Gamma_T$) for $B_c to psi(ns)$ decay modes are predicted in the small and large $q^2$ - region as well as in the whole physical region. The ratios for such transitions are obtained $frac {Gamma_L}{Gamma_T} < 1$ throughout the kinematic range which means the $B_c^+$ meson transitions to vector meson charmonium states take place predominantly in transverse polarization mode. The theoretical predictions on these transitions could be tested in the on-going and forthcoming experiments at LHCb.
97 - Marina Artuso 2003
B meson semileptonic decays are a crucial tool in our studies of the quark mixing parameters Vcb and Vub. The interplay between experimental and theoretical challenges to achieve precision in the determination of these fundamental parameters is discussed.
We present a calculation of the form factors, $f_0$ and $f_+$, for the $B_{(s)} to D_{(s)}$ semileptonic decays. Our work uses the MILC $n_f=2+1$ AsqTad configurations with NRQCD and HISQ valence quarks at four values of the momentum transfer $q^2$. We provide results for the chiral-continuum extrapolations of the scalar and vector form factors.
We report on exploratory studies of heavy-light meson semileptonic decays using Asqtad light quarks, NRQCD heavy quarks and Symanzik improved glue on coarse quenched lattices. Oscillatory contributions to three-point correlators coming from the staggered light quarks are found to be handled well by Bayesian fitting methods. B meson decays to both the Goldstone pion and to one of the point-split non-Goldstone pions are investigated. One-loop perturbative matching of NRQCD/Asqtad heavy-light currents is incorporated.
264 - W.Y. Wang , Y.L. Wu , M. Zhong 2002
We present a general study on exclusive semileptonic decays of heavy (B, D, B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field theory of heavy quark. Transition matrix elements of these decays can be systematically characterized by a set of wave functions which are independent of the heavy quark mass except for the implicit scale dependence. Form factors for all these decays are calculated consistently within the effective theory framework using the light cone sum rule method at the leading order of 1/m_Q expansion. The branching ratios of these decays are evaluated, and the heavy and light flavor symmetry breaking effects are investigated. We also give comparison of our results and the predictions from other approaches, among which are the relations proposed recently in the framework of large energy effective theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا