Do you want to publish a course? Click here

Multi-Agent Common Knowledge Reinforcement Learning

194   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Cooperative multi-agent reinforcement learning often requires decentralised policies, which severely limit the agents ability to coordinate their behaviour. In this paper, we show that common knowledge between agents allows for complex decentralised coordination. Common knowledge arises naturally in a large number of decentralised cooperative multi-agent tasks, for example, when agents can reconstruct parts of each others observations. Since agents an independently agree on their common knowledge, they can execute complex coordinated policies that condition on this knowledge in a fully decentralised fashion. We propose multi-agent common knowledge reinforcement learning (MACKRL), a novel stochastic actor-critic algorithm that learns a hierarchical policy tree. Higher levels in the hierarchy coordinate groups of agents by conditioning on their common knowledge, or delegate to lower levels with smaller subgroups but potentially richer common knowledge. The entire policy tree can be executed in a fully decentralised fashion. As the lowest policy tree level consists of independent policies for each agent, MACKRL reduces to independently learnt decentralised policies as a special case. We demonstrate that our method can exploit common knowledge for superior performance on complex decentralised coordination tasks, including a stochastic matrix game and challenging problems in StarCraft II unit micromanagement.



rate research

Read More

Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Cooperativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation.
Multi-agent interaction is a fundamental aspect of autonomous driving in the real world. Despite more than a decade of research and development, the problem of how to competently interact with diverse road users in diverse scenarios remains largely unsolved. Learning methods have much to offer towards solving this problem. But they require a realistic multi-agent simulator that generates diverse and competent driving interactions. To meet this need, we develop a dedicated simulation platform called SMARTS (Scalable Multi-Agent RL Training School). SMARTS supports the training, accumulation, and use of diverse behavior models of road users. These are in turn used to create increasingly more realistic and diverse interactions that enable deeper and broader research on multi-agent interaction. In this paper, we describe the design goals of SMARTS, explain its basic architecture and its key features, and illustrate its use through concrete multi-agent experiments on interactive scenarios. We open-source the SMARTS platform and the associated benchmark tasks and evaluation metrics to encourage and empower research on multi-agent learning for autonomous driving. Our code is available at https://github.com/huawei-noah/SMARTS.
We propose a practical approach to computing market prices and allocations via a deep reinforcement learning policymaker agent, operating in an environment of other learning agents. Compared to the idealized market equilibrium outcome -- which we use as a benchmark -- our policymaker is much more flexible, allowing us to tune the prices with regard to diverse objectives such as sustainability and resource wastefulness, fairness, buyers and sellers welfare, etc. To evaluate our approach, we design a realistic market with multiple and diverse buyers and sellers. Additionally, the sellers, which are deep learning agents themselves, compete for resources in a common-pool appropriation environment based on bio-economic models of commercial fisheries. We demonstrate that: (a) The introduced policymaker is able to achieve comparable performance to the market equilibrium, showcasing the potential of such approaches in markets where the equilibrium prices can not be efficiently computed. (b) Our policymaker can notably outperform the equilibrium solution on certain metrics, while at the same time maintaining comparable performance for the remaining ones. (c) As a highlight of our findings, our policymaker is significantly more successful in maintaining resource sustainability, compared to the market outcome, in scarce resource environments.
Humanity faces numerous problems of common-pool resource appropriation. This class of multi-agent social dilemma includes the problems of ensuring sustainable use of fresh water, common fisheries, grazing pastures, and irrigation systems. Abstract models of common-pool resource appropriation based on non-cooperative game theory predict that self-interested agents will generally fail to find socially positive equilibria---a phenomenon called the tragedy of the commons. However, in reality, human societies are sometimes able to discover and implement stable cooperative solutions. Decades of behavioral game theory research have sought to uncover aspects of human behavior that make this possible. Most of that work was based on laboratory experiments where participants only make a single choice: how much to appropriate. Recognizing the importance of spatial and temporal resource dynamics, a recent trend has been toward experiments in more complex real-time video game-like environments. However, standard methods of non-cooperative game theory can no longer be used to generate predictions for this case. Here we show that deep reinforcement learning can be used instead. To that end, we study the emergent behavior of groups of independently learning agents in a partially observed Markov game modeling common-pool resource appropriation. Our experiments highlight the importance of trial-and-error learning in common-pool resource appropriation and shed light on the relationship between exclusion, sustainability, and inequality.
517 - Liheng Chen , Hongyi Guo , Yali Du 2019
In many real-world problems, a team of agents need to collaborate to maximize the common reward. Although existing works formulate this problem into a centralized learning with decentralized execution framework, which avoids the non-stationary problem in training, their decentralized execution paradigm limits the agents capability to coordinate. Inspired by the concept of correlated equilibrium, we propose to introduce a coordination signal to address this limitation, and theoretically show that following mild conditions, decentralized agents with the coordination signal can coordinate their individual policies as manipulated by a centralized controller. The idea of introducing coordination signal is to encapsulate coordinated strategies into the signals, and use the signals to instruct the collaboration in decentralized execution. To encourage agents to learn to exploit the coordination signal, we propose Signal Instructed Coordination (SIC), a novel coordination module that can be integrated with most existing MARL frameworks. SIC casts a common signal sampled from a pre-defined distribution to all agents, and introduces an information-theoretic regularization to facilitate the consistency between the observed signal and agents policies. Our experiments show that SIC consistently improves performance over well-recognized MARL models in both matrix games and a predator-prey game with high-dimensional strategy space.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا