Do you want to publish a course? Click here

A multi-agent reinforcement learning model of common-pool resource appropriation

117   0   0.0 ( 0 )
 Added by Joel Leibo
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Humanity faces numerous problems of common-pool resource appropriation. This class of multi-agent social dilemma includes the problems of ensuring sustainable use of fresh water, common fisheries, grazing pastures, and irrigation systems. Abstract models of common-pool resource appropriation based on non-cooperative game theory predict that self-interested agents will generally fail to find socially positive equilibria---a phenomenon called the tragedy of the commons. However, in reality, human societies are sometimes able to discover and implement stable cooperative solutions. Decades of behavioral game theory research have sought to uncover aspects of human behavior that make this possible. Most of that work was based on laboratory experiments where participants only make a single choice: how much to appropriate. Recognizing the importance of spatial and temporal resource dynamics, a recent trend has been toward experiments in more complex real-time video game-like environments. However, standard methods of non-cooperative game theory can no longer be used to generate predictions for this case. Here we show that deep reinforcement learning can be used instead. To that end, we study the emergent behavior of groups of independently learning agents in a partially observed Markov game modeling common-pool resource appropriation. Our experiments highlight the importance of trial-and-error learning in common-pool resource appropriation and shed light on the relationship between exclusion, sustainability, and inequality.



rate research

Read More

Cooperative multi-agent reinforcement learning often requires decentralised policies, which severely limit the agents ability to coordinate their behaviour. In this paper, we show that common knowledge between agents allows for complex decentralised coordination. Common knowledge arises naturally in a large number of decentralised cooperative multi-agent tasks, for example, when agents can reconstruct parts of each others observations. Since agents an independently agree on their common knowledge, they can execute complex coordinated policies that condition on this knowledge in a fully decentralised fashion. We propose multi-agent common knowledge reinforcement learning (MACKRL), a novel stochastic actor-critic algorithm that learns a hierarchical policy tree. Higher levels in the hierarchy coordinate groups of agents by conditioning on their common knowledge, or delegate to lower levels with smaller subgroups but potentially richer common knowledge. The entire policy tree can be executed in a fully decentralised fashion. As the lowest policy tree level consists of independent policies for each agent, MACKRL reduces to independently learnt decentralised policies as a special case. We demonstrate that our method can exploit common knowledge for superior performance on complex decentralised coordination tasks, including a stochastic matrix game and challenging problems in StarCraft II unit micromanagement.
82 - Changliu Liu 2020
This paper introduces a microscopic approach to model epidemics, which can explicitly consider the consequences of individuals decisions on the spread of the disease. We first formulate a microscopic multi-agent epidemic model where every agent can choose its activity level that affects the spread of the disease. Then by minimizing agents cost functions, we solve for the optimal decisions for individual agents in the framework of game theory and multi-agent reinforcement learning. Given the optimal decisions of all agents, we can make predictions about the spread of the disease. We show that there are negative externalities in the sense that infected agents do not have enough incentives to protect others, which then necessitates external interventions to regulate agents behaviors. In the discussion section, future directions are pointed out to make the model more realistic.
Agent advising is one of the main approaches to improve agent learning performance by enabling agents to share advice. Existing advising methods have a common limitation that an adviser agent can offer advice to an advisee agent only if the advice is created in the same state as the advisees concerned state. However, in complex environments, it is a very strong requirement that two states are the same, because a state may consist of multiple dimensions and two states being the same means that all these dimensions in the two states are correspondingly identical. Therefore, this requirement may limit the applicability of existing advising methods to complex environments. In this paper, inspired by the differential privacy scheme, we propose a differential advising method which relaxes this requirement by enabling agents to use advice in a state even if the advice is created in a slightly different state. Compared with existing methods, agents using the proposed method have more opportunity to take advice from others. This paper is the first to adopt the concept of differential privacy on advising to improve agent learning performance instead of addressing security issues. The experimental results demonstrate that the proposed method is more efficient in complex environments than existing methods.
Game theoretic views of convention generally rest on notions of common knowledge and hyper-rational models of individual behavior. However, decades of work in behavioral economics have questioned the validity of both foundations. Meanwhile, computational neuroscience has contributed a modernized dual process account of decision-making where model-free (MF) reinforcement learning trades off with model-based (MB) reinforcement learning. The former captures habitual and procedural learning while the latter captures choices taken via explicit planning and deduction. Some conventions (e.g. international treaties) are likely supported by cognition that resonates with the game theoretic and MB accounts. However, convention formation may also occur via MF mechanisms like habit learning; though this possibility has been understudied. Here, we demonstrate that complex, large-scale conventions can emerge from MF learning mechanisms. This suggests that some conventions may be supported by habit-like cognition rather than explicit reasoning. We apply MF multi-agent reinforcement learning to a temporo-spatially extended game with incomplete information. In this game, large parts of the state space are reachable only by collective action. However, heterogeneity of tastes makes such coordinated action difficult: multiple equilibria are desirable for all players, but subgroups prefer a particular equilibrium over all others. This creates a coordination problem that can be solved by establishing a convention. We investigate start-up and free rider subproblems as well as the effects of group size, intensity of intrinsic preference, and salience on the emergence dynamics of coordination conventions. Results of our simulations show agents establish and switch between conventions, even working against their own preferred outcome when doing so is necessary for effective coordination.
Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Cooperativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا