Do you want to publish a course? Click here

Radiative-capture cross sections for the $^{139}$La($n,gamma$) reactionusing thermal neutrons and structural properties of $^{140}$La

69   0   0.0 ( 0 )
 Added by Aaron Hurst
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A set of prompt partial $gamma$-ray production cross sections from thermal neutron-capture were measured for the $^{139}$La($n,gamma$) reaction using a guided beam of subthermal (thermal and cold) neutrons incident upon a $^{rm nat}$La$_{2}$O$_{3}$ target at the Prompt Gamma Activation Analysis facility of the Budapest Research Reactor. Absolute $^{140}$La cross sections were determined relative to the well-known comparator $^{35}$Cl($n,gamma$) cross sections from the irradiation of a stoichiometric $^{rm nat}$LaCl$_{3}$ sample. The total cross section for radiative thermal neutron-capture on $^{139}$La from the sum of experimentally measured cross sections observed to directly feed the $^{140}$La ground state was determined to be $sigma_{0}^{rm expt} = 8.58(50)$ b. To assess completeness of the decay scheme and as a consistency check, the measured cross sections for transitions feeding the ground state from levels below a critical energy of $E_{c} = 285$ keV were combined with a modeled contribution accounting for ground-state feeding from the quasicontinuum to arrive at a total cross section of $sigma_{0} = 9.36(74)$ b. In addition, a neutron-separation energy of $S_{n} = 5161.005(21)$ keV was determined from a least-squares fit of the measured primary $gamma$-ray energies to the low-lying levels of the $^{140}$La decay scheme. Furthermore, several nuclear structure improvements are proposed for the decay scheme. The measured cross-section and separation-energy results are comparable to earlier measurements of these quantities.



rate research

Read More

Neutron energy-dependent angular distributions were observed for individual $gamma$-rays from the 0.74 eV p-wave resonance of $^{139}$La+$n$ to several lower excited states of $^{140}$La. The $gamma$-ray signals were analyzed in a two dimensional histogram of the $gamma$-ray energy, measured with distributed germanium detectors, and neutron energy, determined with the time-of-flight of pulsed neutrons, to identify the neutron energy dependence of the angular distribution for each individual $gamma$-rays. The angular distribution was also found for a photopeak accompanied with a faint p-wave resonance component in the neutron energy spectrum. Our results can be interpreted as interference between s- and p-wave amplitudes which may be used to study discrete symmetries of fundamental interactions.
A stacked-target of natural lanthanum foils (99.9119% $^{139}$La) was irradiated using a 60 MeV proton beam at the LBNL 88-Inch Cyclotron. $^{139}$La(p,x) cross sections are reported between 35-60 MeV for nine radionuclides. The primary motivation for this measurement was the need to quantify the production of $^{134}$Ce. As a positron-emitting analogue of the promising medical radionuclide $^{225}$Ac, $^{134}$Ce is desirable for in vivo applications of bio-distribution assays for this emerging radio-pharmaceutical. The results of this measurement were compared to the nuclear model codes TALYS, EMPIRE and ALICE (using default parameters), which showed significant deviation from the measured values.
Neutron capture measurements on $^{155}$Gd and $^{157}$Gd were performed using the time-of-flight technique at the n_TOF facility at CERN. Four samples in form of self-sustaining metallic discs isotopically enriched in $^{155}$Gd and $^{157}$Gd were used. The measurements were carried out at the experimental area (EAR1) at 185 m from the neutron source, with an array of 4 C$_6$D$_6$ liquid scintillation detectors. The capture cross sections of $^{155}$Gd and $^{157}$Gd at neutron kinetic energy of 0.0253 eV have been estimated to be 62.2(2.2) kb and 239.8(9.3) kb, respectively, thus up to 6% different relative to the ones reported in the nuclear data libraries. A resonance shape analysis has been performed in the resolved resonance region up to 180 eV and 300 eV, respectively, in average resonance parameters have been found in good agreement with evaluations. Above these energies the observed resonance-like structures in the cross section have been tentatively characterised in terms of resonance energy and area up to 1 keV.
96 - M. M. Htun 1998
Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio $r(theta)$ was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio $r(theta)$ with BUU calculations for free neutrons revealed that $r(theta)$ is insensitive also to the incompressibility modulus in the nuclear equation of state.
Angular distribution of individual $gamma$-rays, emitted from a neutron-induced compound nuclear state via radiative capture reaction of ${}^{139}$La(n,$gamma$) has been studied as a function of incident neutron energy in the epithermal region by using germanium detectors. An asymmetry $A_{mathrm{LH}}$ was defined as $(N_{mathrm L}-N_{mathrm H})/(N_{mathrm L}+N_{mathrm H})$, where $N_{mathrm L}$ and $N_{mathrm H}$ are integrals of low and high energy region of a neutron resonance respectively, and we found that $A_{mathrm{LH}}$ has the angular dependence of $(Acostheta_gamma+B)$, where $theta_gamma$ is emitted angle of $gamma$-rays, with $A= -0.3881pm0.0236$ and $B=-0.0747pm0.0105$ in 0.74 eV p-wave resonance. This angular distribution was analyzed within the framework of interference between s- and p-wave amplitudes in the entrance channel to the compound nuclear state, and it is interpreted as the value of the partial p-wave neutron width corresponding to the total angular momentum of the incident neutron combined with the weak matrix element, in the context of the mechanism of enhanced parity-violating effects. Additionally we used the result to quantify the possible enhancement of the breaking of the time-reversal invariance in the vicinity of the p-wave resonance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا