No Arabic abstract
We study the morphological and structural properties of the host galaxies associated with 57 optically-selected luminous type 2 AGN at $zsim$0.3-0.4: 16 high-luminosity Seyfert 2 (HLSy2, 8.0$le$log($L_{rm [OIII]}/L_{odot})<$8.3) and 41 obscured quasars (QSO2, log($L_{rm [OIII]}/L_{odot})ge$8.3). With this work, the total number of QSO2 at $z<1$ with parametrized galaxies increases from $sim$35 to 76. Our analysis is based on HST WFPC2 and ACS images that we fit with {sc GALFIT}. HLSy2 and QSO2 show a wide diversity of galaxy hosts. The main difference lies in the higher incidence of highly-disturbed systems among QSO2. This is consistent with a scenario in which galaxy interactions are the dominant mechanism triggering nuclear activity at the highest AGN power. There is a strong dependence of galaxy properties with AGN power (assuming $L_ {rm [OIII]}$ is an adequate proxy). The relative contribution of the spheroidal component to the total galaxy light (B/T) increases with $L_ {rm [OIII]}$. While systems dominated by the spheoridal component spread across the total range of $L_ {rm [OIII]}$, most disk-dominated galaxies concentrate at log($L_{rm [OIII]}/L_{odot})<$8.6. This is expected if more powerful AGN are powered by more massive black holes which are hosted by more massive bulges or spheroids. The average galaxy sizes ($langle r_{rm e} rangle$) are 5.0$pm$1.5 kpc for HLSy2 and 3.9$pm$0.6 kpc for HLSy2 and QSO2 respectively. These are significantly smaller than those found for QSO1 and narrow line radio galaxies at similar $z$. We put the results of our work in context of related studies of AGN with quasar-like luminosities.
Galaxy interactions are thought to be one of the main triggers of Active Galactic Nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log($L_{bol}$ [erg/s]) $>$ 45) at z $sim$ 0.6 using HST WFC3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25% of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is $leqslant$20%. While major mergers might increase the incidence of (luminous AGN), they are not the prevalent triggering mechanism in the population of unobscured AGN.
We have compiled a sample of $sim 9600$ bright, $ile 18.95$, red, $b_j-r>2$, candidate galaxies in an area of 220 deg$^2$. These are luminous, $L > L^*$, field early-type galaxies with redshifts $0.3 la z la 0.6$. We present a redshift catalogue of a sub-sample of 581 targets. The galaxies were selected according to their broadband $b_jri$ colours from United Kingdom Schmidt Telescope plates, and have a surface density on the sky of only $sim 50 $deg$^{-2}$. Such luminous field galaxies are virtually absent from published redshift surveys and the catalogue provides a large sample of the most luminous normal galaxies, at cosmological distances. The statistical properties of the galaxy spectra, including absorption line and emission line measures, are presented and a composite spectrum constructed. The nature of the sample, combined with the relatively bright apparent magnitudes make the galaxies suitable targets for several key investigations in galaxy evolution and cosmology.
We present optical imaging and long slit spectroscopic observations of 9 luminous type 2 AGNs within the redshift range 0.3<z<0.6 based on VLT-FORS2 data. Most objects (6/9) are high luminosity Seyfert 2, and three are type 2 quasars (QSO2), with our sample extending to lower luminosity than previous works. Seven out of nine objects (78%) show morphological evidence for interactions or mergers in the form of disturbed morphologies and/or peculiar features such as tidal tails, amorphous halos, or compact emission line knots. The detection rate of morphological evidence for interaction is consistent with those found during previous studies of QSO2 at similar z, suggesting that the merger rate is independent of AGN power at the high end of the AGN luminosity function. We find the emission line flux spatial profiles are often dominated by the often spatially unresolved central source. In addition, all but one of our sample is associated with much fainter, extended line emission. We find these extended emission line structures have a variety of origins and ionization mechanisms: star forming companions, tidal features, or extended ionized nebulae. AGN related processes dominate the excitation of the nuclear gas. Stellar photoionization sometimes plays a role in extended structures often related to mergers/interactions.
We present H-band observations of gravitationally lensed QSO host galaxies obtained with NICMOS on HST as part of the CfA-Arizona-Gravitational-Lens-Survey (CASTLES). The detections are greatly facilitated by the lensing magnification in these systems; we find that most hosts of radio-quiet QSOs (RQQ) at z~2 are of modest luminosity (L<L_*). They are 2-5 times fainter than the hosts of radio-loud QSOs at the same epoch. Compared to low redshifts, RQQ hosts at z~2 also support higher nuclear luminosities at given stellar host mass. This suggests that the supermassive black holes at their centers grew faster at early epochs than the stellar body of their surrounding host galaxies.
Submillimetre-selected galaxies (SMGs) at high redshift ($z$ $sim$ 2) are potential host galaxies of active galactic nuclei (AGN). If the local Universe is a good guide, $sim$ 50$%$ of the obscured AGN amongst the SMG population could be missed even in the deepest X-ray surveys. Radio observations are insensitive to obscuration; therefore, very long baseline interferometry (VLBI) can be used as a tool to identify AGN in obscured systems. A well-established upper limit to the brightness temperature of 10$^5$ K exists in star-forming systems, thus VLBI observations can distinguish AGN from star-forming systems via brightness temperature measurements. We present 1.6 GHz European VLBI Network (EVN) observations of four SMGs (with measured redshifts) to search for evidence of compact radio components associated with AGN cores. For two of the sources, e-MERLIN images are also presented. Out of the four SMGs observed, we detect one source, J123555.14, that has an integrated EVN flux density of 201 $pm$ 15.2 $mu$Jy, corresponding to a brightness temperature of 5.2 $pm$ 0.7 $times$ 10$^5$ K. We therefore identify that the radio emission from J123555.14 is associated with an AGN. We do not detect compact radio emission from a possible AGN in the remaining sources (J123600.10, J131225.73, and J163650.43). In the case of J131225.73, this is particularly surprising, and the data suggest that this may be an extended, jet-dominated AGN that is resolved by VLBI. Since the morphology of the faint radio source population is still largely unknown at these scales, it is possible that with a $sim$ 10 mas resolution, VLBI misses (or resolves) many radio AGN extended on kiloparsec scales.