Do you want to publish a course? Click here

Dynamic jamming of dense suspensions under tilted impact

74   0   0.0 ( 0 )
 Added by Endao Han
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dense particulate suspensions can not only increase their viscosity and shear thicken under external forcing, but also jam into a solid-like state that is fully reversible when the force is removed. An impact on the surface of a dense suspension can trigger this jamming process by generating a shear front that propagates into the bulk of the system. Tracking and visualizing such a front is difficult because suspensions are optically opaque and the front can propagate as fast as several meters per second. Recently, high-speed ultrasound imaging has been used to overcome this problem and extract two-dimensional sections of the flow field associated with jamming front propagation. Here we extend this method to reconstruct the three-dimensional flow field. This enables us to investigate the evolution of jamming fronts for which axisymmetry cannot be assumed, such as impact at angles tilted away from the normal to the free surface of the suspension. We find that sufficiently far from solid boundaries the resulting flow field is approximately identical to that generated by normal impact, but rotated and aligned with the angle of impact. However, once the front approaches the solid boundary at the bottom of the container, it generates a squeeze flow that deforms the front profile and causes jamming to proceed in a non-axisymmetric manner.



rate research

Read More

A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behavior. Based on these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to create them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile states from the more conventional isotropic jammed states.
Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gear-like rolling. Rolling friction decreases the volume fraction required for DST and SJ, in quantitative agreement with real-life suspensions with adhesive surface chemistries and rough particle shapes. It sets a distinct structure of the frictional force network compared to only sliding friction, and from a dynamical perspective leads to an increase in the velocity correlation length, in part responsible for the increased viscosity. The physics of rolling friction is thus a key element in achieving a comprehensive understanding of strongly shear-thickening materials.
Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure which is built under flows and by the interactions between particles. By imposing extensional and shear flows, we can assess the degree of flow-type dependence in regimes below and above thickening. Even when the flow-type dependence is hindered, nondissipative responses, such as normal stress differences, are present and characterise the non-Newtonian behaviour of dense suspensions.
We study the rheological properties of a granular suspension subject to constant shear stress by constant volume molecular dynamics simulations. We derive the system `flow diagram in the volume fraction/stress plane $(phi,F)$: at low $phi$ the flow is disordered, with the viscosity obeying a Bagnold-like scaling only at small $F$ and diverging as the jamming point is approached; if the shear stress is strong enough, at higher $phi$ an ordered flow regime is found, the order/disorder transition being marked by a sharp drop of the viscosity. A broad jamming region is also observed where, in analogy with the glassy region of thermal systems, slow dynamics followed by kinetic arrest occurs when the ordering transition is prevented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا