Do you want to publish a course? Click here

Sign-changing photon-mediated atom interactions in multimode cavity QED

150   0   0.0 ( 0 )
 Added by Benjamin Lev
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sign-changing interactions constitute a crucial ingredient in the creation of frustrated many-body systems such as spin glasses. We present here the demonstration of a photon-mediated sign-changing interaction between Bose-Einstein condensed (BEC) atoms in a confocal cavity. The interaction between two atoms is of an unusual, nonlocal form proportional to the cosine of the inner product of the atoms position vectors. This interaction arises from the differing Gouy phase shifts of the cavitys degenerate modes. Moreover, these Gouy phase anomalies induce an extra pattern of Z_2-symmetry-breaking in the atomic density-wave self-ordering that arises from a nonequilibrium Dicke-type phase transition in the system. This state is detected via the holographic imaging of the cavitys superradiant emission. Together with Ref. [1], we explore this interactions influence on superradiant phase transitions in multimode cavities. Employing this interaction in cavity QED spin systems may enable the creation of artificial spin glasses and quantum neural networks.



rate research

Read More

Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
The Peierls instability toward a charge density wave is a canonical example of phonon-driven strongly correlated physics and is intimately related to topological quantum matter and exotic superconductivity. We propose a method to realize an analogous photon-mediated Peierls transition, using a system of one-dimensional tubes of interacting Bose or Fermi atoms trapped inside a multimode confocal cavity. Pumping the cavity transversely engineers a cavity-mediated metal--to--insulator transition in the atomic system. For strongly interacting bosons in the Tonks-Girardeau limit, this transition can be understood (through fermionization) as being the Peierls instability. We extend the calculation to finite values of the interaction strength and derive analytic expressions for both the cavity field and mass gap. They display nontrivial power law dependence on the dimensionless matter-light coupling.
Optical cavities can induce photon-mediated interactions among intracavity-trapped atoms. Multimode cavities provide the ability to tune the form of these interactions, e.g., by inducing a nonlocal, sign-changing term to the interaction. By accounting for the Gouy phase shifts of the modes in a nearly degenerate, confocal, Fabry-Perot cavity, we provide a theoretical description of this interaction, along with additional experimental confirmation to complement that presented in the companion paper, Ref. [1]. Furthermore, we show that this interaction should be written in terms of a complex order parameter, allowing for a U(1)-symmetry to emerge. This symmetry corresponds to the phase of the atomic density wave arising from self-organization when the cavity is transversely pumped above a critical threshold power. We theoretically and experimentally show how this phase depends on the position of the Bose-Einstein condensate (BEC) within the cavity and discuss mechanisms that break the U(1)-symmetry and lock this phase. We then consider alternative Fabry-Perot multimode cavity geometries (i.e., beyond the confocal) and schemes with more than one pump laser and show that these provide additional capabilities for tuning the cavity-meditated interaction among atoms, including the ability to restore the U(1)-symmetry despite the presence of symmetry-breaking effects. These photon-mediated interactions may be exploited for realizing quantum liquid crystalline states and spin glasses using multimode optical cavities.
We present a novel cavity QED system in which a Bose-Einstein condensate (BEC) is trapped within a high-finesse optical cavity whose length may be adjusted to access both single-mode and multimode configurations. We demonstrate the coupling of an atomic ensemble to the cavity in both configurations. The atoms are confined either within an intracavity far-off-resonance optical dipole trap (FORT) or a crossed optical dipole trap via transversely oriented lasers. Multimode cavity QED provides fully emergent and dynamical optical lattices for intracavity BECs. Such systems will enable explorations of quantum soft matter, including superfluid smectics, superfluid glasses, and spin glasses as well as neuromorphic associative memory.
282 - Lei Tan , Bin Wang , Peter Barker 2012
We investigate the energy structures and the dynamics of a Bose-Einstein condensates (BEC) in a triple-well potential coupled a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several interesting phenomena arise which are the focuses of this work. For the energy structure, the bistability appears in the energy levels due to this atoms-cavity field nonlinearity, and the same phenomena can be found in the intra-cavity photons number. With an increase of the pump-cavity detunings, the higher and lower energy levels show a loop structure due to this cavity-mediated effects. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا